Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 358
Filtrar
1.
Chimia (Aarau) ; 75(10): 895-896, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34728023
2.
Nat Commun ; 12(1): 6394, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34737288

RESUMO

Organic halide salt passivation is considered to be an essential strategy to reduce defects in state-of-the-art perovskite solar cells (PSCs). This strategy, however, suffers from the inevitable formation of in-plane favored two-dimensional (2D) perovskite layers with impaired charge transport, especially under thermal conditions, impeding photovoltaic performance and device scale-up. To overcome this limitation, we studied the energy barrier of 2D perovskite formation from ortho-, meta- and para-isomers of (phenylene)di(ethylammonium) iodide (PDEAI2) that were designed for tailored defect passivation. Treatment with the most sterically hindered ortho-isomer not only prevents the formation of surficial 2D perovskite film, even at elevated temperatures, but also maximizes the passivation effect on both shallow- and deep-level defects. The ensuing PSCs achieve an efficiency of 23.9% with long-term operational stability (over 1000 h). Importantly, a record efficiency of 21.4% for the perovskite module with an active area of 26 cm2 was achieved.

3.
Langmuir ; 37(40): 11869-11879, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34601883

RESUMO

Colloidal stability was investigated in two types of particle systems, namely, with bare (h-HNT) and polyimidazolium-functionalized (h-HNT-IP-2) alkali-treated halloysite nanotubes in solutions of metal salts and ionic liquids (ILs). The valence of the metal ions and the number of carbon atoms in the hydrocarbon chain of the IL cations (1-methylimidazolium (MIM+), 1-ethyl-3-methylimidazolium (EMIM+), 1-butyl-3-methylimidazolium (BMIM+), and 1-hexyl-3-methylimidazolium (HMIM+)) were altered in the measurements. For the bare h-HNT with a negative surface charge, multivalent counterions destabilized the dispersions at low values of critical coagulation concentration (CCC) in line with the Schulze-Hardy rule. In the presence of ILs, significant adsorption of HMIM+ took place on the h-HNT surface, leading to charge neutralization and overcharging at appropriate concentrations. A weaker affinity was observed for MIM+, EMIM+, and BMIM+, while they adsorbed on the particles to different extents. The order HMIM+ < BMIM+ < EMIM+ < MIM+ was obtained for the CCCs of h-HNT, indicating that HMIM+ was the most effective in the destabilization of the colloids. For h-HNT-IP-2 with a positive surface charge, no specific interaction was observed between the salt and the IL constituent cations and the particles, i.e., the determined charge and aggregation parameters were the same within experimental error, irrespective of the type of co-ions. These results clearly indicate the relevance of ion adsorption in the colloidal stability of the nanotubes and thus provide useful information for further design of processable h-HNT dispersions.

4.
Artigo em Inglês | MEDLINE | ID: mdl-34704729

RESUMO

Hybrid lead halide perovskites have reached comparable efficiencies to state-of-the-art silicon solar cell technologies. However, a remaining key challenge toward commercialization is the resolution of the perovskite device instability. In this work, we identify for the first time the mobile nature of bis(trifluoromethanesulfonyl)imide (TFSI-), a typical anion extensively employed in p-type dopants for 2,2'7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'spirofluorene (spiro-OMeTAD). We demonstrate that TFSI- can migrate through the perovskite layer via the grain boundaries and accumulate at the perovskite/electron-transporting layer (ETL) interface. Our findings reveal that the migration of TFSI- enhances the device performance and stability, resulting in highly stable p-i-n cells that retain 90% of their initial performance after 1600 h of continuous testing. Our systematic study, which targeted the effect of the nature of the dopant and its concentration, also shows that TFSI- acts as a dynamic defect-healing agent, which self-passivates the perovskite crystal defects during the migration process and thereby decreases nonradiative recombination pathways.

5.
Dalton Trans ; 50(43): 15760-15777, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34704998

RESUMO

The reactions of the dimeric complexes [RuX2(η6-p-cymene)]2 (X = Br, I, SCN) with L-proline (ProH) and trans-4-hydroxy-L-proline (HypH), in methanol in the presence of NaOH, afforded [RuX(κ2N,O-Pro)(η6-p-cymene)] (X = Br, 1b; I, 1c; SCN, 1d) and [RuX(κ2N,O-Hyp)(η6-p-cymene)] (X = Br, 2b; I, 2c; SCN, 2d), respectively. Alternatively, the one-pot, sequential addition of the appropriate α-amino carboxylate and X- salt to [RuCl2(η6-p-cymene)]2 led to [RuX(κ2N,O-Pro)(η6-p-cymene)] (X = N3, 1e; NO2, 1f; CN 1g) and [Ru(N3)(κ2N,O-Hyp)(η6-p-cymene)] (2e). Complexes [Ru(κ3N,O,O'-O2CCH(NH2)(R)O)(η6-p-cymene)] (R = CH2, 3h; R = CHMe, 4h; R = CH2CH2, 5h) were prepared from the reaction of [RuCl2(η6-p-cymene)]2 with the appropriate α-amino acid and NaOH in refluxing isopropanol. Treatment of the L-serine (SerH2) derivative [RuCl(κ2N,O-SerH)(η6-p-cymene)] (3a) with 1,3,5-triaza-7-phosphaadamantane (PTA) in water at reflux produced [Ru(κ2N,O-Ser)(κP-PTA)(η6-p-cymene)]Cl ([3i]Cl). The products were isolated in good to excellent yields, and were characterized by elemental analysis, IR and multinuclear NMR spectroscopy. The structures of 1f and 2b-e were ascertained by X-ray diffraction studies. The behaviour of the complexes in water and cell culture medium was investigated by multinuclear NMR and UV-Vis spectroscopy, revealing a considerable influence of the monodentate ligand on the aqueous chemistry. Complexes 1d-e, 2d-e, 3h, 4h and [3i]Cl, showing substantial inertness in aqueous media, were assessed for their cytotoxicity towards A2780 and A2780cisR cancer cell lines and the noncancerous HEK 293T cell line. A selection of compounds was also investigated for Ru uptake in A2780 cells and interactions with cytochrome c as a model protein. Combined, these studies provide insights into the previously debated role of the 'leaving' ligand on the biological activity of Ru(II) arene α-amino acid complexes.

6.
Organometallics ; 40(15): 2516-2528, 2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34475610

RESUMO

A series of bioactive molecules were synthesized from the condensation of aspirin or chlorambucil with terminal alkynes bearing alcohol or amine substituents. Insertion of the resulting alkynes into the iron-carbyne bond of readily accessible diiron bis(cyclopentadienyl) µ-aminocarbyne complexes, [1a,b]CF3SO3, afforded novel diiron complexes with a bridging vinyliminium ligand, [2-10]CF3SO3, functionalized with a bioactive moiety. All compounds were characterized by elemental analysis and IR and multinuclear NMR spectroscopy and in three cases by single-crystal X-ray diffraction. Moreover, the D2O solubility, stability in D2O and cell culture media, and octanol-water partition coefficients of diiron complexes were determined spectroscopically. The cytotoxicity of the complexes was assessed in the tumorigenic A2780 and A2780cisR and the nontumorigenic HEK 293T cell lines. Some complexes exhibit high potency and the ability to overcome resistance in A2780cisR cells (aspirin complexes) or high selectivity relative to HEK 293T cells (chlorambucil complexes). Further studies indicate that the complexes significantly trigger intracellular ROS production, irrespective of the nature of the bioactive fragment. DNA alkylation and protein binding studies were also undertaken.

7.
Chem Mater ; 33(15): 6059-6067, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34475636

RESUMO

To attain commercial viability, perovskite solar cells (PSCs) have to be reasonably priced, highly efficient, and stable for a long period of time. Although a new record of a certified power conversion efficiency (PCE) value over 25% was achieved, PSC performance is limited by the lack of hole-transporting materials (HTMs), which extract positive charges from the light-absorbing perovskite layer and carry them to the electrode. Here, we report spirobifluorene-based HTMs with finely tuned energy levels, high glass-transition temperature, and excellent charge mobility and conductivity enabled by molecularly engineered enamine arms. HTMs are synthesized using simple condensation chemistry, which does not require costly catalysts, inert reaction conditions, and time-consuming product purification procedures. Enamine-derived HTMs allow the fabrication of PSCs reaching a maximum PCE of 19.2% and stability comparable to spiro-OMeTAD. This work demonstrates that simple enamine condensation reactions could be used as a universal path to obtain HTMs for highly efficient and stable PSCs.

8.
JACS Au ; 1(6): 729-733, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34467329

RESUMO

Rhodium nanoparticles embedded on the interior of hollow porous carbon nanospheres, able to sieve monomers from polymers, were used to confirm the precise role of metal catalysts in the reductive catalytic fractionation of lignin. The study provides clear evidence that the primary function of the metal catalyst is to hydrogenate monomeric lignin fragments into more stable forms following a solvent-based fractionation and fragmentation of lignin.

9.
Heliyon ; 7(8): e07749, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34430738

RESUMO

RAPTA-EA1 is a promising glutathione transferase (GSTP-1) inhibitor that has previously been shown to inhibit the growth of various breast cancer cells. We studied the anticancer activity of RAPTA-EA1 on triple-negative BRCA1 competent breast cancer MDA-MB-231 cells. MDA-MB-231 cells are significantly more sensitive to RAPTA-EA1 than MCF-7 cells. Treatment reveals a higher degree of cytotoxicity than cisplatin against both cell lines. Ruthenium accumulation in MDA-MB-231 cells is mainly in the nuclear fraction (43%), followed by the cytoplasm (30%), and the mitochondria (27%). RAPTA-EA1 blocks cell growth at the G2/M phase, leading to nuclear condensation and cell death. The compound slightly inhibits DNA replication of the 3,426-bp fragment of the BRCA1 exon 11 of the cells, with approximately 0.6 lesion per the BRCA1 fragment. The expression of BRCA1 mRNA and its protein in the Ru-treated cells is curtailed by 50-80% compared to the untreated controls. Growth inhibition of the triple-negative BRCA1 wild-type MDA-MB-231 and the sporadic BRCA1 wild-type MCF-7 cells by olaparib (a poly [ADP-ribose] polymerase (PARP) inhibitor) is dose-dependent, with MDA-MB-231 cells being two-fold less susceptible to the drug than MCF-7 cells. Combining olaparib with RAPTA-EA1 results in a combination index (CI) of 0.78 (almost additive) in MDA-MB-231 cells and 0.24 (potent synergy) in the MCF-7 cells. The PARP inhibitor alone differently regulates the expression of BRCA1 mRNA in both cell lines, whereas the olaparib-RAPTA-EA1 combination induces overexpression of BRCA1 mRNA in these cells. However, the expression level of the BRCA1 protein is dramatically reduced after treatment with the combined inhibitors, compared with the untreated controls. This observation highlights the cellular responses of triple-negative BRCA1 proficient breast cancer MDA-MB-231 cells to RAPTA-EA1 through BRCA1 inhibition and provides insights into alternative treatments for breast cancer.

10.
Cancers (Basel) ; 13(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34439134

RESUMO

Repurposed drugs have been evaluated for the management of clear cell renal cell carcinoma (ccRCC), but only a few have influenced the overall survival of patients with advanced disease. To combine repurposed non-oncology with oncological drugs, we applied our validated phenotypic method, which consisted of a reduced experimental part and data modeling. A synergistic optimized multidrug combination (ODC) was identified to significantly reduce the energy levels in cancer remaining inactive in non-cancerous cells. The ODC consisted of Rapta-C, erlotinib, metformin and parthenolide and low doses. Molecular and functional analysis of ODC revealed a loss of adhesiveness and induction of apoptosis. Gene-expression network analysis displayed significant alterations in the cellular metabolism, confirmed by LC-MS based metabolomic analysis, highlighting significant changes in the lipid classes. We used heterotypic in vitro 3D co-cultures and ex vivo organoids to validate the activity of the ODC, maintaining an efficacy of over 70%. Our results show that repurposed drugs can be combined to target cancer cells selectively with prominent activity. The strong impact on cell adherence and metabolism indicates a favorable mechanism of action of the ODC to treat ccRCC.

11.
Angew Chem Int Ed Engl ; 60(37): 20489-20497, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34223674

RESUMO

The emerging CsPbI3 perovskites are highly efficient and thermally stable materials for wide-band gap perovskite solar cells (PSCs), but the doped hole transport materials (HTMs) accelerate the undesirable phase transition of CsPbI3 in ambient. Herein, a dopant-free D-π-A type HTM named CI-TTIN-2F has been developed which overcomes this problem. The suitable optoelectronic properties and energy-level alignment endow CI-TTIN-2F with excellent charge collection properties. Moreover, CI-TTIN-2F provides multisite defect-healing effects on the defective sites of CsPbI3 surface. Inorganic CsPbI3 PSCs with CI-TTIN-2F HTM feature high efficiencies up to 15.9 %, along with 86 % efficiency retention after 1000 h under ambient conditions. Inorganic perovskite solar modules were also fabricated that exhibiting an efficiency of 11.0 % with a record area of 27 cm2 . This work confirms that using efficient dopant-free HTMs is an attractive strategy to stabilize inorganic PSCs for their future scale-up.

12.
Inorg Chem ; 60(13): 9529-9541, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34156246

RESUMO

Four bipyridine-type ligands variably derivatized with two bioactive groups (taken from ethacrynic acid, flurbiprofen, biotin, and benzylpenicillin) were prepared via sequential esterification steps from commercial 2,2'-bipyridine-4,4'-dicarboxylic acid and subsequently coordinated to ruthenium(II) p-cymene and iridium(III) pentamethylcyclopentadienyl scaffolds. The resulting complexes were isolated as nitrate salts in high yields and fully characterized by analytical and spectroscopic methods. NMR and MS studies in aqueous solution and in cell culture medium highlighted a substantial stability of ligand coordination and a slow release of the bioactive fragments in the latter case. The complexes were assessed for their antiproliferative activity on four cancer cell lines, showing cytotoxicity to the low micromolar level (equipotent with cisplatin). Additional biological experiments revealed a multimodal mechanism of action of the investigated compounds, involving DNA metalation and enzyme inhibition. Synergic effects provided by specific combinations of metal and bioactive fragments were identified, pointing toward an optimal ethacrynic acid/flurbiprofen combination for both Ru(II) and Ir(III) complexes.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Irídio/farmacologia , Piridinas/farmacologia , Rutênio/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Dano ao DNA , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Irídio/química , Ligantes , Estrutura Molecular , Piridinas/química , Rutênio/química , Células Tumorais Cultivadas
13.
Dalton Trans ; 50(23): 8167-8178, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34031671

RESUMO

The synergistic combination of the anticancer drug carboplatin and the iron chelator deferoxamine (DFO) served as a foundation for the development of novel multifunctional prodrugs. Hence, five platinum(iv) complexes, featuring the equatorial coordination sphere of carboplatin, and one or two DFO units incorporated at axial positions, were synthesized and characterized using ESI-HRMS, multinuclear (1H, 13C, 15N, 195Pt) NMR spectroscopy and elemental analysis. Analytical studies demonstrated that the chelating properties of the DFO moiety were not compromised after coupling to the platinum(iv) core. The cytotoxic activity of the compounds was evaluated in monolayer (2D) and spheroid (3D) cancer cell models, derived from ovarian teratocarcinoma (CH1/PA-1), colon carcinoma (SW480) and non-small cell lung cancer (A549). The platinum(iv)-DFO prodrugs demonstrated moderate in vitro cytotoxicity (a consequence of their slow activation kinetics) but with less pronounced differences between intrinsically chemoresistant and chemosensitive cell lines as well as between 2D and 3D models than the clinically used platinum(ii) drug carboplatin.


Assuntos
Antineoplásicos/farmacologia , Carboplatina/farmacologia , Desferroxamina/farmacologia , Compostos Organoplatínicos/farmacologia , Pró-Fármacos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Carboplatina/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Desferroxamina/química , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Compostos Organoplatínicos/síntese química , Compostos Organoplatínicos/química , Pró-Fármacos/síntese química , Pró-Fármacos/química , Células Tumorais Cultivadas
14.
J Inorg Biochem ; 218: 111399, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33706122

RESUMO

An automatic methodology based on micro sequential injection analysis coupled to a lab-on-valve system (termed µSIA-LOV) was developed and used to determine the ability of metal-based anticancer compounds to inhibit cyclooxygenase 2 (COX-2) activity. COX-2 may be involved in pathogenesis of cancer and it is overexpressed in several types of solid tumors. Since platinum-based compounds are extensively used in the treatment of cancer, and ruthenium compounds are considered as promising candidates for next generation of non-targeted anticancer drugs, it is interesting to establish whether COX-2 inhibition is relevant to their mode of action. The µSIA-LOV system was optimized and the IC50 values of each compound were calculated. All the results present RSD values less than 2.5%. IC50 values of 9.7 ±â€¯0.6 µM to 207 ±â€¯3 µM were obtained, with the most active inhibitor for COX-2 being rofecoxib with the metal compounds exhibiting IC50 values in the range 13.7 ±â€¯1.6 to 207 ±â€¯3. The results obtained in this work provide significant information about the mechanism of the studied compounds, mostly ruthenium-based compounds, and the role of COX-2 in their mode of action. Moreover, this work confirmed the potential of the µSIA-LOV system as a simple, versatile, robust, and rapid analytical tool for automating the determination of IC50 values of metal-based compounds.

15.
Chemistry ; 27(1): 12-19, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33107649

RESUMO

In recent years, core-shell nano-catalysts have received increasing attention due to their tunable properties and broad applications in catalysis. Control of the two components of these materials allows their catalytic properties to be tuned to various sustainable processes in synthetic and energy-related applications. This Concept article describes recent state-of-the-art core-shell materials and their application as heterogeneous catalysts for a range of sustainable catalytic transformations, focusing on two important classes of renewable substrates, CO2 and biomass. In the discussion, emphasis is directed to the role of the constituent parts of the core-shell structure and how they can be manipulated to enhance activity.

16.
Chemistry ; 26(72): 17525-17535, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33252170

RESUMO

A facile route to PtII complexes doubly functionalized with bioactive molecules through a bipyridine-type ligand is described. Initially, ligands LEE (containing two ethacrynic acid units), LEF (ethacrynic acid+flurbiprofen) and LEB (ethacrynic acid+biotin) were obtained in moderate to good yields from 2,2'-bipyridine-4,4'-dicarboxylic acid. Subsequent reaction of the ligands with [PtCl2 (DMSO)2 ] afforded complexes [PtCl2 (LEE )] (2), [PtCl2 (LEF )] (3) and [PtCl2 (LEB )] (4) in high yields. All compounds were fully characterized by analytical and spectroscopic methods. Complexes 2-4 are highly stable in water/DMSO solution at 37 °C after 72 h, whereas progressive release of the bioactive fragments was detected in a cell culture medium. The compounds were assessed for their in vitro antiproliferative activity towards tumorigenic A2780, A2780cisR and Y79 cells and non-tumourigenic HEK293 cells. In particular, the combination of ethacrynic acid and flurbiprofen in 3 overcomes cisplatin-based resistance and provides strong cancer cell selectivity. Enzyme inhibition assays on human GST P1 and human COX-2 and cross-experiments with complex 1, analogous to 2-4 but lacking bio-groups, revealed a clear synergy between the PtII frame and the bioactive organic components.


Assuntos
2,2'-Dipiridil/química , Antineoplásicos , Cisplatino/farmacologia , Ácido Etacrínico/farmacologia , Neoplasias Ovarianas , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Cisplatino/uso terapêutico , Ácido Etacrínico/uso terapêutico , Feminino , Flurbiprofeno/uso terapêutico , Células HEK293 , Humanos , Neoplasias Ovarianas/tratamento farmacológico
17.
Phys Chem Chem Phys ; 22(42): 24764-24770, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33107516

RESUMO

Ion specific effects of ionic liquid (IL) constituents on the surface charge and aggregation properties of two types of particles (positively charged amidine (AL) and polyimidazolium-functionalized sulfate (SL-IP-2) latexes) were investigated in IL solutions containing different anions and the 1-butyl-3-methylimidazolium cation. For the AL systems, the affinity of IL anions to the particle surface followed the sequence chloride < bromide < nitrate < acetate. The critical coagulation concentration values decreased in the same order indicating that ion specific adsorption determines the surface charge density and the extent of the repulsive interparticle forces. In contrast, no tendencies were observed for the SL-IP-2 particles, i.e., both charge and aggregation features were insensitive to the type of anions. This surprising behavior sheds light on that surface functionalization with the polyimidazolium compound effectively masks interfacial ion specific effects. These results indicate new possible routes to the design of processable particle dispersions in ILs irrespective of their composition.

18.
Sci Adv ; 6(27)2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32937440

RESUMO

Catalytic dehydrogenation and hydrogenation of amines and alcohols are important in the synthesis of fine chemicals. Despite several efficient homogeneous catalysts having been identified, highly active heterogeneous catalysts remain elusive, although they would meet an unmet need. Here, we show that bimetallic Pd-Au nanoparticles with Pd-to-Au molar ratios of 3:1 immobilized on multiwall carbon nanotubes (Pd3Au1/CNT) display high catalytic activity in the oxidant-free and acceptorless dehydrogenation and hydrogenation of N- and O-containing heterocyclic compounds, amines/imines, and alcohols/ketones. Transmission electron microscopy analysis demonstrates the preferential exposure of Pd3Au1(111) facets on the Pd3Au1/CNT catalyst. Mechanistic insights combining experimental data with density functional theory calculations reveal that the Pd3Au1(111) surface enhances both dehydrogenation and hydrogenation reactions and provides a rationale for the observed enhancements.

19.
Chem ; 6(1): 41-60, 2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-32864503

RESUMO

Metal-based drugs and imaging agents are extensively used in the clinic for the treatment and diagnosis of cancers and a wide range of other diseases. The current clinical arsenal of compounds operate via a limited number of mechanisms, whereas new putative compounds explore alternative mechanisms of action, which could potentially bring new chemotherapeutic approaches into the clinic. In this review, metal-based drugs and imaging agents are characterized according to their primary mode of action and the key properties and features of each class of compounds are defined, wherever possible. A better understanding of the roles played by metal compounds at a mechanistic level will help to deliver new metal-based therapies to the clinic, by providing an alternative, targeted and rational approach, to supplement non-targeted screening of novel chemical entities for biological activity.

20.
Adv Mater ; 32(40): e2003801, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32856374

RESUMO

Despite the excellent photovoltaic properties achieved by perovskite solar cells at the laboratory scale, hybrid perovskites decompose in the presence of air, especially at high temperatures and in humid environments. Consequently, high-efficiency perovskites are usually prepared in dry/inert environments, which are expensive and less convenient for scale-up purposes. Here, a new approach based on the inclusion of an in situ polymerizable ionic liquid, 1,3-bis(4-vinylbenzyl)imidazolium chloride ([bvbim]Cl), is presented, which allows perovskite films to be manufactured under humid environments, additionally leading to a material with improved quality and long-term stability. The approach, which is transferrable to several perovskite formulations, allows efficiencies as high as 17% for MAPbI3 processed in air % relative humidity (RH) ≥30 (from an initial 15%), and 19.92% for FAMAPbI3 fabricated in %RH ≥50 (from an initial 17%), providing one of the best performances to date under similar conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...