Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 311-312: 201-211, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31491432

RESUMO

Antiretroviral therapy requires lifelong daily dosing to attain viral suppression, restore immune function, and improve quality of life. As a treatment alternative, long-acting (LA) antiretrovirals can sustain therapeutic drug concentrations in blood for prolonged time periods. The success of recent clinical trials for LA parenteral cabotegravir and rilpivirine highlight the emergence of these new therapeutic options. Further optimization can improve dosing frequency, lower injection volumes, and facilitate drug-tissue distributions. To this end, we report the synthesis of a library of RPV prodrugs designed to sustain drug plasma concentrations and improved tissue biodistribution. The lead prodrug M3RPV was nanoformulated into the stable LA injectable NM3RPV. NM3RPV treatment led to RPV plasma concentrations above the protein-adjusted 90% inhibitory concentration for 25 weeks with substantial tissue depots after a single intramuscular injection in BALB/cJ mice. NM3RPV elicited 13- and 26-fold increases in the RPV apparent half-life and mean residence time compared to native drug formulation. Taken together, proof-of-concept is provided that nanoformulated RPV prodrugs can extend the apparent drug half-life and improve tissue biodistribution. These results warrant further development for human use.

2.
Int J Nanomedicine ; 14: 6231-6247, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31496683

RESUMO

Purpose: A palmitoylated prodrug of emtricitabine (FTC) was synthesized to extend the drug's half-life, antiretroviral activities and biodistribution. Methods: A modified FTC prodrug (MFTC) was synthesized by palmitoyl chloride esterification. MFTC's chemical structure was evaluated by nuclear magnetic resonance. The created hydrophobic prodrug nanocrystals were encased into a poloxamer surfactant and the pharmacokinetics (PK), biodistribution and antiretroviral activities of the nanoformulation (NMFTC) were assessed. The conversion of MFTC to FTC triphosphates was evaluated. Results: MFTC coated with poloxamer formed stable nanocrystals (NMFTC). NMFTC demonstrated an average particle size, polydispersity index and zeta potential of 350 nm, 0.24 and -20 mV, respectively. Drug encapsulation efficiency was 90%. NMFTC was readily taken up by human monocyte-derived macrophages yielding readily detected intracellular FTC triphosphates and an extended PK profile. Conclusion: NMFTC shows improved antiretroviral activities over native FTC. This is coordinate with its extended apparent half-life. The work represents an incremental advance in the development of a long-acting FTC formulation.


Assuntos
Composição de Medicamentos , Emtricitabina/farmacologia , Nanopartículas/química , Pró-Fármacos/farmacologia , Animais , Antirretrovirais/farmacologia , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Emtricitabina/sangue , Emtricitabina/síntese química , Emtricitabina/química , Humanos , Cinética , Macrófagos/efeitos dos fármacos , Masculino , Nanopartículas/ultraestrutura , Pró-Fármacos/síntese química , Pró-Fármacos/química , Espectroscopia de Prótons por Ressonância Magnética , Ratos Sprague-Dawley
3.
Biomaterials ; 222: 119441, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31472458

RESUMO

While antiretroviral therapy (ART) has revolutionized treatment and prevention of human immunodeficiency virus type one (HIV-1) infection, regimen adherence, viral mutations, drug toxicities and access stigma and fatigue are treatment limitations. These have led to new opportunities for the development of long acting (LA) ART including implantable devices and chemical drug modifications. Herein, medicinal and formulation chemistry were used to develop LA prodrug nanoformulations of emtricitabine (FTC). A potent lipophilic FTC phosphoramidate prodrug (M2FTC) was synthesized then encapsulated into a poloxamer surfactant (NM2FTC). These modifications extended the biology, apparent drug half-life and antiretroviral activities of the formulations. NM2FTC demonstrated a >30-fold increase in macrophage and CD4+ T cell drug uptake with efficient conversion to triphosphates (FTC-TP). Intracellular FTC-TP protected macrophages against an HIV-1 challenge for 30 days. A single intramuscular injection of NM2FTC, at 45 mg/kg native drug equivalents, into Sprague Dawley rats resulted in sustained prodrug levels in blood, liver, spleen and lymph nodes and FTC-TP in lymph node and spleen cells at one month. In contrast, native FTC-TPs was present for one day. These results are an advance in the transformation of FTC into a LA agent.

4.
Org Lett ; 21(7): 2281-2284, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30859823

RESUMO

Alloviroidin is a cyclic heptapeptide, produced by several species of Amanita mushrooms, that demonstrates high affinity for F-actin as is characteristic of virotoxins and phallotoxins. Alloviroidin was synthesized via a [3 + 4] fragment condensation of Fmoc-d-Thr(OTBS)-d-Ser(OTBS)-(2 S,3 R,4 R)-DHPro(OTBS)2-OH and H-Ala-Trp(2-SO2Me)-(2 S,4 S)-DHLeu(5-OTBS)-Val-OMe to form bond A. The linear heptapeptide favored a turn conformation, facilitating cyclization between Val1 and d-Thr2 (position B). Global deprotection and HPLC purification afforded alloviroidin with NMR spectra in excellent agreement with the natural product.

5.
Biomaterials ; 185: 174-193, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30245386

RESUMO

Antiretroviral therapy (ART) has changed the outcome of human immunodeficiency virus type one (HIV-1) infection from certain death to a life free of disease co-morbidities. However, infected people must remain on life-long daily ART. ART reduces but fails to eliminate the viral reservoir. In order to improve upon current treatment regimens, our laboratory created long acting slow effective release (LASER) ART nanoformulated prodrugs from native medicines. LASER ART enables antiretroviral drugs (ARVs) to better reach target sites of HIV-1 infection while, at the same time, improve ART's half-life and potency. However, novel ARV design has been slowed by prolonged pharmacokinetic testing requirements. To such ends, tri-modal theranostic nanoparticles were created with single-photon emission computed tomography (SPECT/CT), magnetic resonance imaging (MRI) and fluorescence capabilities to predict LASER ART biodistribution. The created theranostic ARV probes were then employed to monitor drug tissue distribution and potency. Intrinsically 111Indium (111In) radiolabeled, europium doped cobalt-ferrite particles and rilpivirine were encased in a polycaprolactone core surrounded by a lipid shell (111InEuCF-RPV). Particle cell and tissue distribution, and antiretroviral activities were sustained in macrophage tissue depots. 111InEuCF-PCL/RPV particles injected into mice demonstrated co-registration of MRI and SPECT/CT tissue signals with RPV and cobalt. Cell and animal particle biodistribution paralleled ARV activities. We posit that particle selection can predict RPV distribution and potency facilitated by multifunctional theranostic nanoparticles.

6.
Nat Mater ; 17(2): 114-116, 2018 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-29358769
7.
Theranostics ; 8(1): 256-276, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29290806

RESUMO

RATIONALE: Long-acting slow effective release antiretroviral therapy (LASER ART) was developed to improve patient regimen adherence, prevent new infections, and facilitate drug delivery to human immunodeficiency virus cell and tissue reservoirs. In an effort to facilitate LASER ART development, "multimodal imaging theranostic nanoprobes" were created. These allow combined bioimaging, drug pharmacokinetics and tissue biodistribution tests in animal models. METHODS: Europium (Eu3+)- doped cobalt ferrite (CF) dolutegravir (DTG)- loaded (EuCF-DTG) nanoparticles were synthesized then fully characterized based on their size, shape and stability. These were then used as platforms for nanoformulated drug biodistribution. RESULTS: Folic acid (FA) decoration of EuCF-DTG (FA-EuCF-DTG) nanoparticles facilitated macrophage targeting and sped drug entry across cell barriers. Macrophage uptake was higher for FA-EuCF-DTG than EuCF-DTG nanoparticles with relaxivities of r2 = 546 mM-1s-1 and r2 = 564 mM-1s-1 in saline, and r2 = 850 mM-1s-1 and r2 = 876 mM-1s-1 in cells, respectively. The values were ten or more times higher than what was observed for ultrasmall superparamagnetic iron oxide particles (r2 = 31.15 mM-1s-1 in saline) using identical iron concentrations. Drug particles were detected in macrophage Rab compartments by dual fluorescence labeling. Replicate particles elicited sustained antiretroviral responses. After parenteral injection of FA-EuCF-DTG and EuCF-DTG into rats and rhesus macaques, drug, iron and cobalt levels, measured by LC-MS/MS, magnetic resonance imaging, and ICP-MS were coordinate. CONCLUSION: We posit that these theranostic nanoprobes can assess LASER ART drug delivery and be used as part of a precision nanomedicine therapeutic strategy.


Assuntos
Imagem por Ressonância Magnética/métodos , Imagem Multimodal/métodos , Nanomedicina Teranóstica/métodos , Animais , Sistemas de Liberação de Medicamentos/métodos , Európio/química , Európio/farmacocinética , Ácido Fólico/química , Compostos Heterocíclicos com 3 Anéis/química , Compostos Heterocíclicos com 3 Anéis/farmacocinética , Macaca mulatta , Macrófagos/metabolismo , Microscopia Confocal , Nanopartículas/química
8.
Acta Biomater ; 49: 507-520, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27916740

RESUMO

The size, shape and chemical composition of europium (Eu3+) cobalt ferrite (CFEu) nanoparticles were optimized for use as a "multimodal imaging nanoprobe" for combined fluorescence and magnetic resonance bioimaging. Doping Eu3+ ions into a CF structure imparts unique bioimaging and magnetic properties to the nanostructure that can be used for real-time screening of targeted nanoformulations for tissue biodistribution assessment. The CFEu nanoparticles (size ∼7.2nm) were prepared by solvothermal techniques and encapsulated into poloxamer 407-coated mesoporous silica (Si-P407) to form superparamagnetic monodisperse Si-CFEu nanoparticles with a size of ∼140nm. Folic acid (FA) nanoparticle decoration (FA-Si-CFEu, size ∼140nm) facilitated monocyte-derived macrophage (MDM) targeting. FA-Si-CFEu MDM uptake and retention was higher than seen with Si-CFEu nanoparticles. The transverse relaxivity of both Si-CFEu and FA-Si-CFEu particles were r2=433.42mM-1s-1 and r2=419.52mM-1s-1 (in saline) and r2=736.57mM-1s-1 and r2=814.41mM-1s-1 (in MDM), respectively. The results were greater than a log order-of-magnitude than what was observed at replicate iron concentrations for ultrasmall superparamagnetic iron oxide (USPIO) particles (r2=31.15mM-1s-1 in saline) and paralleled data sets obtained for T2 magnetic resonance imaging. We now provide a developmental opportunity to employ these novel particles for theranostic drug distribution and efficacy evaluations. STATEMENT OF SIGNIFICANCE: A novel europium (Eu3+) doped cobalt ferrite (Si-CFEu) nanoparticle was produced for use as a bioimaging probe. Its notable multifunctional, fluorescence and imaging properties, allows rapid screening of future drug biodistribution. Decoration of the Si-CFEu particles with folic acid increased its sensitivity and specificity for magnetic resonance imaging over a more conventional ultrasmall superparamagnetic iron oxide particles. The future use of these particles in theranostic tests will serve as a platform for designing improved drug delivery strategies to combat inflammatory and infectious diseases.


Assuntos
Cobalto/química , Európio/química , Compostos Férricos/química , Imagem por Ressonância Magnética , Nanopartículas/química , Dióxido de Silício/química , Animais , Endocitose , Ácido Fólico/química , Humanos , Imuno-Histoquímica , Macrófagos/metabolismo , Macrófagos/ultraestrutura , Masculino , Microscopia de Força Atômica , Microscopia Confocal , Monócitos/citologia , Nanopartículas/toxicidade , Ratos Sprague-Dawley , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Distribuição Tecidual
9.
Nanomedicine (Lond) ; 12(2): 99-115, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27879160

RESUMO

AIM: Our goal was to improve treatment outcomes for visceral leishmaniasis by designing nanocarriers that improve drug biodistribution and half-life. Thus, long-acting mannose-anchored thiolated chitosan amphotericin B nanocarrier complexes (MTC AmB) were developed and characterized. MATERIALS & METHODS: A mannose-anchored thiolated chitosan nanocarrier was manufactured and characterized. MTC AmB was examined for cytotoxicity, biocompatibility, uptake and antimicrobial activities. RESULTS: MTC AmB was rod shaped with a size of 362 nm. MTC AmB elicited 90% macrophage viability and 71-fold enhancement in drug uptake compared with native drug. The antileishmanial IC50 for MTC AmB was 0.02 µg/ml compared with 0.26 µg/ml for native drug. CONCLUSION: These studies show that MTC can serve as a platform for clearance of Leishmania in macrophages.


Assuntos
Anfotericina B/química , Anfotericina B/uso terapêutico , Leishmaniose Visceral/tratamento farmacológico , Manose/química , Animais , Antiprotozoários/química , Antiprotozoários/uso terapêutico , Linhagem Celular , Quitosana/química , Humanos , Leishmania donovani/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Camundongos , Nanopartículas
10.
PLoS One ; 10(12): e0145966, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26716700

RESUMO

Long-acting nanoformulated antiretroviral therapy (nanoART) induces a range of innate immune migratory, phagocytic and secretory cell functions that perpetuate drug depots. While recycling endosomes serve as the macrophage subcellular depots, little is known of the dynamics of nanoART-cell interactions. To this end, we assessed temporal leukocyte responses, drug uptake and distribution following both intraperitoneal and intramuscular injection of nanoformulated atazanavir (nanoATV). Local inflammatory responses heralded drug distribution to peritoneal cell populations, regional lymph nodes, spleen and liver. This proceeded for three days in male Balb/c mice. NanoATV-induced changes in myeloid populations were assessed by fluorescence-activated cell sorting (FACS) with CD45, CD3, CD11b, F4/80, and GR-1 antibodies. The localization of nanoATV within leukocyte cell subsets was determined by confocal microscopy. Combined FACS and ultra-performance liquid chromatography tandem mass-spectrometry assays determined nanoATV carriages by cell-based vehicles. A robust granulocyte, but not peritoneal macrophage nanoATV response paralleled zymosan A treatment. ATV levels were highest at sites of injection in peritoneal or muscle macrophages, dependent on the injection site. The spleen and liver served as nanoATV tissue depots while drug levels in lymph nodes were higher than those recorded in plasma. Dual polymer and cell labeling demonstrated a nearly exclusive drug reservoir in macrophages within the liver and spleen. Overall, nanoART induces innate immune responses coincident with rapid tissue macrophage distribution. Taken together, these works provide avenues for therapeutic development designed towards chemical eradication of human immunodeficiency viral infection.


Assuntos
Sulfato de Atazanavir/administração & dosagem , Portadores de Fármacos/administração & dosagem , Inibidores da Protease de HIV/administração & dosagem , Nanopartículas/administração & dosagem , Animais , Sulfato de Atazanavir/farmacocinética , Química Farmacêutica , Preparações de Ação Retardada/farmacocinética , Portadores de Fármacos/farmacocinética , Sistemas de Liberação de Medicamentos , Infecções por HIV/tratamento farmacológico , Inibidores da Protease de HIV/farmacocinética , Humanos , Imunidade Inata , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Confocal , Distribuição Tecidual
11.
Curr Med Chem ; 21(36): 4186-98, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25174930

RESUMO

Human immunodeficiency virus (HIV) infection commonly results in a myriad of comorbid conditions secondary to immune deficiency. Infection also affects broad organ system function. Although current antiretroviral therapy (ART) reduces disease morbidity and mortality through effective control of peripheral viral load, restricted infection in HIV reservoirs including gut, lymphoid and central nervous system tissues, is not eliminated. What underlies these events is, in part, poor ART penetrance into each organ across tissue barriers, viral mutation and the longevity of infected cells. We posit that one means to improve these disease outcomes is through nanotechnology. To this end, this review discusses a broad range of cutting-edge nanomedicines and nanomedicine platforms that are or can be used to improve ART delivery. Discussion points include how polymer-drug conjugates, dendrimers, micelles, liposomes, solid lipid nanoparticles and polymeric nanoparticles can be harnessed to best yield cell-based delivery systems. When completely developed, such nanomedicine platforms have the potential to clear reservoirs of viral infection.


Assuntos
Fármacos Anti-HIV/administração & dosagem , Portadores de Fármacos/química , Infecções por HIV/tratamento farmacológico , Nanomedicina , Fármacos Anti-HIV/química , Terapia Baseada em Transplante de Células e Tecidos , Dendrímeros/química , Humanos , Lipossomos/química , Micelas , Nanopartículas/química
12.
FASEB J ; 28(12): 5071-82, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25122556

RESUMO

Eradication of Mycobacterium tuberculosis (MTB) infection requires daily administration of combinations of rifampin (RIF), isoniazid [isonicotinylhydrazine (INH)], pyrazinamide, and ethambutol, among other drug therapies. To facilitate and optimize MTB therapeutic selections, a mononuclear phagocyte (MP; monocyte, macrophage, and dendritic cell)-targeted drug delivery strategy was developed. Long-acting nanoformulations of RIF and an INH derivative, pentenyl-INH (INHP), were prepared, and their physicochemical properties were evaluated. This included the evaluation of MP particle uptake and retention, cell viability, and antimicrobial efficacy. Drug levels reached 6 µg/10(6) cells in human monocyte-derived macrophages (MDMs) for nanoparticle treatments compared with 0.1 µg/10(6) cells for native drugs. High RIF and INHP levels were retained in MDM for >15 d following nanoparticle loading. Rapid loss of native drugs was observed in cells and culture fluids within 24 h. Antimicrobial activities were determined against Mycobacterium smegmatis (M. smegmatis). Coadministration of nanoformulated RIF and INHP provided a 6-fold increase in therapeutic efficacy compared with equivalent concentrations of native drugs. Notably, nanoformulated RIF and INHP were found to be localized in recycling and late MDM endosomal compartments. These were the same compartments that contained the pathogen. Our results demonstrate the potential of antimicrobial nanomedicines to simplify MTB drug regimens.


Assuntos
Antituberculosos/farmacologia , Endossomos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Nanopartículas , Células Cultivadas , Endossomos/metabolismo , Humanos , Macrófagos/metabolismo , Frações Subcelulares/metabolismo
13.
Nanomedicine ; 9(8): 1263-73, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23680933

RESUMO

UNLABELLED: Macrophages serve as vehicles for the carriage and delivery of polymer-coated nanoformulated antiretroviral therapy (nanoART). Although superior to native drug, high drug concentrations are required for viral inhibition. Herein, folate-modified ritonavir-boosted atazanavir (ATV/r)-encased polymers facilitated macrophage receptor targeting for optimizing drug dosing. Folate coating of nanoART ATV/r significantly enhanced cell uptake, retention and antiretroviral activities without altering cell viability. Enhanced retentions of folate-coated nanoART within recycling endosomes provided a stable subcellular drug depot. Importantly, up to a five-fold enhanced plasma and tissue drug levels followed folate-coated formulation injection in mice. Folate polymer encased ATV/r improves nanoART pharmacokinetics bringing the technology one step closer to human use. FROM THE CLINICAL EDITOR: This team of authors describes a novel method for macrophage folate receptor-targeted antiretroviral therapy. Atazanvir entry, retention, and antiretroviral activities were superior using the presented method, and so was its biodistribution, enabling a more efficient way to address human immunodeficiency virus infections, with a hoped for clinical application in the near future.


Assuntos
Fármacos Anti-HIV/uso terapêutico , Receptores de Folato com Âncoras de GPI/metabolismo , Ácido Fólico/uso terapêutico , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Macrófagos/metabolismo , Oligopeptídeos/uso terapêutico , Piridinas/uso terapêutico , Animais , Fármacos Anti-HIV/administração & dosagem , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacocinética , Sulfato de Atazanavir , Células Cultivadas , Sistemas de Liberação de Medicamentos , Ácido Fólico/administração & dosagem , Ácido Fólico/análogos & derivados , Ácido Fólico/farmacocinética , Infecções por HIV/metabolismo , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/virologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Oligopeptídeos/administração & dosagem , Oligopeptídeos/química , Oligopeptídeos/farmacocinética , Piridinas/administração & dosagem , Piridinas/química , Piridinas/farmacocinética , Distribuição Tecidual
14.
Chem Sci J ; 4(2)2013 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-24860687

RESUMO

1-Deoxy-D-xylulsose-5-phosphate (DXP) is a key intermediate in the non-mevalonate or methyl erythritol phosphate (MEP) pathway for the biosynthesis of isoprenoid, which are essential building blocks involved in the construction of pathogens growth. Since the homologous enzymes of this pathway are not present in vertebrates, including humans, the MEP pathway presents a viable source for antimicrobial drug targets. However, an insight into the features of the enzymes involved in this pathway has been plagued by lack of chirally pure substrates. Here in, we report an efficient synthesis of enantiomerically pure 1-deoxy-D-xylulose-5-phosphate from commercially available 1,2-O-isopropylidene-α-D-xylofuranose through Weinreb amide formation in shorter route.

15.
Acta Crystallogr Sect E Struct Rep Online ; 68(Pt 9): o2810-1, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22969682

RESUMO

The title compound, C(13)H(15)ClN(2)O(6), was synthesized by hypochlorous acid-mediated chlorination of N-acetyl-3-nitro-l-tyrosine ethyl ester. The OH group forms an intra-molecular O-H⋯O hydrogen bond to the nitro group and the N-H group forms an inter-molecular N-H⋯O hydrogen bonds to an amide O atom, linking the mol-ecules into chains along [100]. The crystal studied was a non-merohedral twin, with a 0.907 (4):0.093 (4) domain ratio.

16.
J Org Chem ; 74(11): 4132-6, 2009 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-19413277

RESUMO

(+/-)-Dehydroleucine was prepared and resolved by porcine kidney acylase. Under the conditions of the Sharpless asymmetric dihydroxylation (SAD), employing AD-mix-alpha, N alpha-carbobenzyloxy-(2S)-4,5-dehydroleucine methyl ester (16) gave rise to a 6.5:1.0 mixture of gamma-lactones 17, favoring the 4R configuration. Such carbamate-protected alpha-amino-gamma-hydroxylactones are not recommended as intermediates for peptide synthesis, since model studies showed that lactone 13 was unreactive toward amines. Moreover, the lactone ring could not be opened hydrolytically without epimerization at C alpha. N alpha-carbobenzyloxy-(2S)-4,5-dehydroleucine (22) was condensed with valine ethyl ester (19) to give dipeptide 23. Treatment of 23 with AD-mix-beta, under the SAD conditions, converted the dehydroleucine residue to gamma,delta-dihydroxyleucine with 4S configuration, as occurs in alloviroidin (3), a natural product isolated from Amanita suballiacea.


Assuntos
Leucina/análogos & derivados , Leucina/síntese química , Peptídeos/química , Amidoidrolases/metabolismo , Animais , Hidroxilação , Leucina/química , Leucina/metabolismo , Peptídeos Cíclicos , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA