Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Adv Res ; 33: 227-239, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34603792

RESUMO

Background: Because enzymes can control several metabolic pathways and regulate the production of free radicals, their simultaneous use with nanoplatforms showing protective and combinational properties is of great interest in the development of therapeutic nano-based platforms. However, enzyme immobilization on nanomaterials is not straightforward due to the toxic and unpredictable properties of nanoparticles in medical practice. Aim of review: In fact, because of the ability to load enzymes on nano-based supports and increase their renewability, scientific groups have been tempted to create potential therapeutic enzymes in this field. Therefore, this study not only pays attention to the therapeutic and diagnostic applications of diseases by enzyme-nanoparticle (NP) bio-conjugate (abbreviated as: ENB), but also considers the importance of nanoplatforms used based on their toxicity, ease of application and lack of significant adverse effects on loaded enzymes. In the following, based on the published reports, we explained that the immobilization of enzymes on polymers, inorganic metal oxide and hybrid compounds provide hopes for potential use of ENBs in medical activities. Then, the use of ENBs in bioassay activities such as paper-based or wearing biosensors and lab-on-chip/microfluidic biosensors were evaluated. Finally, this review addresses the current challenges and future perspective of ENBs in biomedical applications. Key scientific concepts of review: This literature may provide useful information regarding the application of ENBs in biosensing and therapeutic platforms.

2.
Molecules ; 26(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34500603

RESUMO

The past few decades have witnessed significant progress in anticancer drug discovery. Small molecules containing heterocyclic moieties have attracted considerable interest for designing new antitumor agents. Of these, the pyrimidine ring system is found in multitude of drug structures, and being the building unit of DNA and RNA makes it an attractive scaffold for the design and development of anticancer drugs. Currently, 22 pyrimidine-containing entities are approved for clinical use as anticancer drugs by the FDA. An exhaustive literature search indicates several publications and more than 59 patents from the year 2009 onwards on pyrimidine derivatives exhibiting potent antiproliferative activity. These pyrimidine derivatives exert their activity via diverse mechanisms, one of them being inhibition of protein kinases. Aurora kinase (AURK) and polo-like kinase (PLK) are protein kinases involved in the regulation of the cell cycle. Within the numerous pyrimidine-based small molecules developed as anticancer agents, this review focuses on the pyrimidine fused heterocyclic compounds modulating the AURK and PLK proteins in different phases of clinical trials as anticancer agents. This article aims to provide a comprehensive overview of synthetic strategies for the preparation of pyrimidine derivatives and their associated biological activity on AURK/PLK. It will also present an overview of the synthesis of the heterocyclic-2-aminopyrimidine, 4-aminopyrimidine and 2,4-diaminopyrimidine scaffolds, and one of the pharmacophores in AURK/PLK inhibitors is described systematically.


Assuntos
Aurora Quinases/antagonistas & inibidores , Proteínas de Ciclo Celular/antagonistas & inibidores , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Pirimidinas/síntese química , Pirimidinas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Ciclo Celular/efeitos dos fármacos , Descoberta de Drogas/métodos , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
3.
Molecules ; 26(12)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200814

RESUMO

Multi-drug resistant pathogens are a rising danger for the future of mankind. Iodine (I2) is a centuries-old microbicide, but leads to skin discoloration, irritation, and uncontrolled iodine release. Plants rich in phytochemicals have a long history in basic health care. Aloe Vera Barbadensis Miller (AV) and Salvia officinalis L. (Sage) are effectively utilized against different ailments. Previously, we investigated the antimicrobial activities of smart triiodides and iodinated AV hybrids. In this work, we combined iodine with Sage extracts and pure AV gel with polyvinylpyrrolidone (PVP) as an encapsulating and stabilizing agent. Fourier transform infrared spectroscopy (FT-IR), Ultraviolet-visible spectroscopy (UV-Vis), Surface-Enhanced Raman Spectroscopy (SERS), microstructural analysis by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-Ray-Diffraction (XRD) analysis verified the composition of AV-PVP-Sage-I2. Antimicrobial properties were investigated by disc diffusion method against 10 reference microbial strains in comparison to gentamicin and nystatin. We impregnated surgical sutures with our biohybrid and tested their inhibitory effects. AV-PVP-Sage-I2 showed excellent to intermediate antimicrobial activity in discs and sutures. The iodine within the polymeric biomaterial AV-PVP-Sage-I2 and the synergistic action of the two plant extracts enhanced the microbial inhibition. Our compound has potential for use as an antifungal agent, disinfectant and coating material on sutures to prevent surgical site infections.


Assuntos
Antibacterianos/química , Antibacterianos/síntese química , Aloe/química , Antifúngicos/química , Gentamicinas/química , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura/métodos , Nistatina/química , Extratos Vegetais/química , Povidona/química , Salvia/química , Salvia officinalis/química , Espectrometria por Raios X/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Difração de Raios X/métodos
4.
J Adv Res ; 30: 171-184, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34026294

RESUMO

Background: Heterocyclic compounds have always been used as a core portion in the development of anticancer drugs. However, there is a pressing need for developing inexpensive and simple alternatives to high-cost and complex chemical agents-based catalysts for large-scale production of heterocyclic compounds. Also, development of some smart platforms for cancer treatment based on nanoparticles (NPs) which facilitate Fenton reaction have been widely explored by different scientists. Magnetic NPs not only can serve as catalysts in the synthesis of heterocyclic compounds with potential anticancer properties, but also are widely used as smart agents in targeting cancer cells and inducing Fenton reactions. Aim of Review: Therefore, in this review we aim to present an updated summary of the reports related to the main clinical or basic application and research progress of magnetic NPs in cancer as well as their application in the synthesis of heterocyclic compounds as potential anticancer drugs. Afterwards, specific tumor microenvironment (TME)-responsive magnetic nanocatalysts for cancer treatment through triggering Fenton-like reactions were surveyed. Finally, some ignored factors in the design of magnetic nanocatalysts- triggered Fenton-like reaction, challenges and future perspective of magnetic nanocatalysts-assisted synthesis of heterocyclic compounds and selective cancer therapy were discussed.Key Scientific Concepts of Review:This review may pave the way for well-organized translation of magnetic nanocatalysts in cancer therapy from the bench to the bedside.


Assuntos
Antineoplásicos/farmacologia , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapêutico , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/química , Catálise , Humanos , Peróxido de Hidrogênio/química , Hipertermia Induzida/métodos , Ferro/química , Fenômenos Magnéticos , Camundongos , Neoplasias/metabolismo , Fototerapia/métodos , Microambiente Tumoral/efeitos dos fármacos
5.
Polymers (Basel) ; 13(7)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33805240

RESUMO

The non-toxic inorganic antimicrobial agents iodine (I2) and copper (Cu) are interesting alternatives for biocidal applications. Iodine is broad-spectrum antimicrobial agent but its use is overshadowed by compound instability, uncontrolled iodine release and short-term effectiveness. These disadvantages can be reduced by forming complex-stabilized, polymeric polyiodides. In a facile, in-vitro synthesis we prepared the copper-pentaiodide complex [Cu(H2O)6(12-crown-4)5]I6 · 2I2, investigated its structure and antimicrobial properties. The chemical structure of the compound has been verified. We used agar well and disc-diffusion method assays against nine microbial reference strains in comparison to common antibiotics. The stable complex revealed excellent inhibition zones against C. albicans WDCM 00054, and strong antibacterial activities against several pathogens. [Cu(H2O)6(12-crown-4)5]I6 · 2I2 is a strong antimicrobial agent with an interesting crystal structure consisting of complexes located on an inversion center and surrounded by six 12-crown-4 molecules forming a cationic substructure. The six 12-crown-4 molecules form hydrogen bonds with the central Cu(H2O)6. The anionic substructure is a halogen bonded polymer which is formed by formal I5- repetition units. The topology of this chain-type polyiodide is unique. The I5- repetition units can be understood as a triodide anion connected to two iodine molecules.

6.
Int J Nanomedicine ; 16: 1313-1330, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33628022

RESUMO

Nanotechnology has been actively integrated as drug carriers over the last few years to treat various cancers. The main hurdle in the clinical management of cancer is the development of multidrug resistance against chemotherapeutic agents. To overcome the limitations of chemotherapy, the researchers have been developing technological advances for significant progress in the oncotherapy by enabling the delivery of chemotherapeutic agents at increased drug content levels to the targeted spots. Several nano-drug delivery systems designed for tumor-targeting are evaluated in preclinical and clinical trials and showed promising outcomes in cancerous tumors' clinical management. This review describes nanocarrier's importance in managing different types of cancers and emphasizing nanocarriers for drug delivery and cancer nanotherapeutics. It also highlights the recent advances in nanocarriers-based delivery systems, including polymeric nanocarriers, micelles, nanotubes, dendrimers, magnetic nanoparticles, solid lipid nanoparticles, and quantum dots (QDs). The nanocarrier-based composites are discussed in terms of their structure, characteristics, and therapeutic applications in oncology. To conclude, the challenges and future exploration opportunities of nanocarriers in chemotherapeutics are also presented.


Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Animais , Antineoplásicos/química , Humanos , Lipídeos/química , Neoplasias/tratamento farmacológico , Pontos Quânticos/química
7.
J Biomol Struct Dyn ; 39(10): 3780-3786, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32397951

RESUMO

Researchers have reported some useful information about the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) leading to CoV disease 2019 (COVID-19). Several studies have been performed in order to develop antiviral drugs, from which a few have been prescribed to patients. Also, several diagnostic tests have been designed to accelerate the process of identifying and treating COVID-19. It has been well-documented that the surface of host cells is covered by some receptors, known as angiotensin-converting enzyme 2 (ACE2), which mediates the binding and entry of CoV. After entering, the viral RNA interrupts the cell proliferation system to activate self-proliferation. However, having all the information about the outbreakof the SARS-COV-2, it is not still clear which factors determine the severity of lung and heart function impairment induced by COVID-19. A major step in exploring SARS-COV-2 pathogenesis is to determine the distribution of ACE2 in different tissues . In this review, the structure and origin of CoV, the role of ACE2 as a receptor of SARS-COV-2 on the surface of host cells, and the ACE2 distribution in different tissues with a focus on lung and cardiovascular system have been discussed. It was also revealed that acute and chronic cardiovascular diseases (CVDs) may result in the clinical severity of COVID-19. In conclusion, this review may provide useful information in developing some promising strategies to end up with a worldwide COVID-19 pandemic.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , Pandemias , Enzima de Conversão de Angiotensina 2 , Humanos , Pulmão , Peptidil Dipeptidase A/genética , SARS-CoV-2
8.
Mater Sci Eng C Mater Biol Appl ; 119: 111649, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33321685

RESUMO

The interaction of nanoparticles with protein and cells may provide important information regarding their biomedical implementations. Herein, after synthesis of tin oxide (SnO2) nanoparticles by hydrothermal method, their interaction with human serum albumin (HSA) was evaluated by multispectroscopic and molecular docking (MD) approaches. Furthermore, the selective antiproliferative impact of SnO2 nanoparticles against leukemia K562 cells was assessed by different cellular assays, whereas lymphocytes were used as control cells. TEM, DLS, zeta potential and XRD techniques showed that crystalline SnO2 nanoparticles have a size of less than 50 nm with a good colloidal stability. Fluorescence and CD spectroscopy analysis indicated that the HSA undergoes some slight conformational changes after interaction with SnO2 nanoparticles, whereas the secondary structure of HSA remains intact. Moreover, MD outcomes revealed that the charged residues of HSA preferentially bind to SnO2 nanoclusters in the binding pocket. Antiproliferative examinations displayed that SnO2 nanoparticles can selectively cause the mortality of K562 cells through induction of cell membrane leakage, activation of caspase-9, -8, -3, down regulation of Bcl-2 mRNA, the elevation of ROS level, S phase arrest, and apoptosis. In conclusion, this data may indicate that SnO2 nanoparticles can be used as promising particles to be integrated into therapeutic platforms.


Assuntos
Nanopartículas , Compostos de Estanho , Humanos , Células K562 , Simulação de Acoplamento Molecular
9.
Talanta ; 224: 121805, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33379031

RESUMO

Researchers have recently introduced some artificial enzymes based on nanomaterials that show significant catalytic activity relative to native enzymes called nanozyme. These nanozymes show superior performance than conventional catalysts and are considered as fascinating candidates for introducing the next generation of biomaterials in various industrial and biomedical fields. Recently, nanozymes have received a great deal of attention in biomedical applications due to their potential properties such as long-term stability, low cost, mass production capability, and controllable catalytic activity. Due to the intrinsic catalytic activity of nanoparticles (NPs) as nanozymes and their ability to be regulated in biomedical processes, this review paper focuses on the in vivo applications of nanozymes in biosensing and therapeutic activities. Despite the challenges and benefits of each approach, this paper attempts to provide an appropriate motivation for the classification of different nanozymes followed by their application in biomedical activities including in vivo biosensing and therapeutic potential in cancer, inflammation and microbial infections. Finally, some ongoing challenges and future perspective of nanozymes in biomedical application were surveyed. In conclusion, this paper may provide useful information regarding the development of nanozymes as promising platforms in biomedical settings due to expedited diagnosis, the advancement of multifactorial therapies and their pronounced stability.


Assuntos
Nanopartículas , Nanoestruturas , Neoplasias , Catálise , Humanos , Inflamação/tratamento farmacológico , Neoplasias/tratamento farmacológico
10.
Talanta ; 223(Pt 1): 121704, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33303154

RESUMO

The rapid outbreak of coronavirus disease 2019 (COVID-19) around the world is a tragic and shocking event that demonstrates the unpreparedness of humans to develop quick diagnostic platforms for novel infectious diseases. In fact, statistical reports of diagnostic tools show that their accuracy, specificity and sensitivity in the detection of COVID hampered by some challenges that can be eliminated by using nanoparticles (NPs). In this study, we aimed to present an overview on the most important ways to diagnose different kinds of viruses followed by the introduction of nanobiosensors. Afterward, some methods of COVID-19 detection such as imaging, laboratory and kit-based diagnostic tests are surveyed. Furthermore, nucleic acids/protein- and immunoglobulin (Ig)-based nanobiosensors for the COVID-19 detection infection are reviewed. Finally, current challenges and future perspective for the development of diagnostic or monitoring technologies in the control of COVID-19 are discussed to persuade the scientists in advancing their technologies beyond imagination. In conclusion, it can be deduced that as rapid COVID-19 detection infection can play a vital role in disease control and treatment, this review may be of great help for controlling the COVID-19 outbreak by providing some necessary information for the development of portable, accurate, selectable and simple nanobiosensors.


Assuntos
Técnicas Biossensoriais , COVID-19/diagnóstico , Nanotecnologia , Humanos , Kit de Reagentes para Diagnóstico , Sensibilidade e Especificidade
11.
Biomimetics (Basel) ; 5(3)2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32957469

RESUMO

Antibiotic resistance is an eminent threat for the survival of mankind. Nosocomial infections caused by multidrug resistant microorganisms are a reason for morbidity and mortality worldwide. Plant-based antimicrobial agents are based on synergistic mechanisms which prevent resistance and have been used for centuries against ailments. We suggest the use of cost-effective, eco-friendly Aloe Vera Barbadensis Miller (AV)-iodine biomaterials as a new generation of antimicrobial agents. In a facile, one-pot synthesis, we encapsulated fresh AV gel with polyvinylpyrrolidone (PVP) as a stabilizing agent and incorporated iodine moieties in the form of iodine (I2) and sodium iodide (NaI) into the polymer matrix. Ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FT-IR), x-ray diffraction (XRD), microstructural analysis by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) verified the composition of AV-PVP-I2, AV-PVP-I2-NaI. AV, AV-PVP, AV-PVP-I2, AV-PVP-I2-NaI, and AV-PVP-NaI were tested in-vitro by disc diffusion assay and dip-coated on polyglycolic acid (PGA) sutures against ten microbial reference strains. All the tested pathogens were more susceptible towards AV-PVP-I2 due to the inclusion of "smart" triiodides with halogen bonding in vitro and on dip-coated sutures. The biocomplexes AV-PVP-I2, AV-PVP-I2-NaI showed remarkable antimicrobial properties. "Smart" biohybrids with triiodide inclusions have excellent antifungal and promising antimicrobial activities, with potential use against surgical site infections (SSI) and as disinfecting agents.

12.
Nanomaterials (Basel) ; 10(10)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32992952

RESUMO

Thermoelectric (TE) materials are possible solutions of the current problems in the energy sector to overcome environmental pollution, increasing energy demand and the decline of natural resources. Thermoelectric materials are a promising alternative for the conversion of waste heat to electricity. Nanocrystalline PbTe powder was synthesized by a simple chemical method at room temperature and systematically investigated at various durations as samples A1-A5. Fourier Transform infrared spectroscopy (FTIR), x-ray diffraction (XRD), microstructural analysis by scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) confirmed the composition of the samples. TE parameters as thermo-emf of samples A1-A5 and electrical conductivity were measured. The cyclic voltammetry gives a band gap of 0.25 eV, which is in agreement with the optical band gap of the material. The A4 sample has an average crystal size of 36 nm with preferred orientation in (200) verifying the cubic morphology. The obtained TE parameters are beneficial for the non-uniform TE materials which might be due to strong current boundary scattering and extremely low thermal conductivity of the samples.

13.
Artigo em Inglês | MEDLINE | ID: mdl-32759816

RESUMO

(1) Background: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began spreading across the globe in December and, as of 9 July 2020, had inflicted more than 550,000 deaths. Public health measures implemented to control the outbreak caused socio-economic havoc in many countries. The pandemic highlighted the quality of health care systems, responses of policymakers in harmony with the population, and socio-economic resilience factors. We suggest that different national strategies had an impact on mortality and case count. (2) Methods: We collected fatality data for 17 countries until 2 June 2020 from public data and associated these with implemented containment measures. (3) Results: The outcomes present the effectiveness of control mechanisms in mitigating the virus for selected countries and the UAE as a special case. Pre-existing conditions defined the needed public health strategies and fatality numbers. Other pre-existing conditions, such as temperature, humidity, median age, and low serum 25-hydroxyvitamin D (25(OH)D) concentrations played minor roles and may have had no direct impact on fatality rates. (4) Conclusions: Prevention, fast containment, adequate public health strategies, and importance of indoor environments were determining factors in mitigating the pandemic. Development of public health strategies adapted to pre-existing conditions for each country and community compliance with implemented policies ensure the successful control of pandemics.


Assuntos
Betacoronavirus/isolamento & purificação , Infecções por Coronavirus/prevenção & controle , Controle de Infecções/métodos , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , COVID-19 , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/mortalidade , Infecções por Coronavirus/virologia , Surtos de Doenças , Humanos , Umidade , Pneumonia Viral/epidemiologia , Pneumonia Viral/mortalidade , Pneumonia Viral/virologia , Saúde Pública , SARS-CoV-2
14.
J Pharm Bioallied Sci ; 12(1): 22-30, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32801597

RESUMO

Introduction: Drug adherence is a major factor in determining health outcomes of geriatric patients and is a growing concern for health-care systems as the geriatric population shows a steep rise due to improved health-care services in the UAE. Aim: We aimed to evaluate the adherence and beliefs of geriatric patients in the UAE toward their medicines and to explore the factors affecting them. Methods: A cross-sectional study was performed including 163 geriatric patients. Surveys, direct observations, and interviews were used for primary data collection. Demographic data were computed using descriptive statistics method. The Statistical Package for the Social Sciences (SPSS) program, Version 19.0, SPSS Inc., Chicago, IL, USA, was used to analyze and code the raw data, whereas chi-squared test was used to analyze the responses. Secondary data were also collected. Results: The results indicated that patient factors and medication factors are the main risk factors for medication nonadherence among geriatric patients in the UAE. The study found that drug regimen (91.4%, N = 149), forgetfulness (87.1%, N = 142), time constraints (67.5%, N = 110), and cost (55.2%, N = 90) were the main key factors affecting medication adherence. Also, poor communication (12.9%), the lack of trust (16.6%), confidence (20.2%), and patient involvement (43.6%) were shown to influence adherence behaviors to medication. The main habits, attitudes, and beliefs that were found to affect patient's adherence were follow-ups (73%), inadequate knowledge of medicine (60.1%), the lack of perceived benefits (18.4%), and limited knowledge on health conditions (19.6%). The study showed 161 patients among the total 163 participants forget taking their medications and others cease from taking their medications. To conclude, nonadherence to medications is a substantial problem among the elderly in the UAE. Conclusion: The study findings confirm the need for further research to examine the perspectives of at-risk population with a focus on knowledge, beliefs, and attitudes on medication nonadherence.

15.
Molecules ; 25(14)2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32668655

RESUMO

Infectious diseases caused by fungi and mycobacteria pose an important problem for humankind. Similarly, cancer is one of the leading causes of death globally. Therefore, there is an urgent need for the development of novel agents to combat the deadly problems of cancer, tuberculosis, and also fungal infections. Hence, in the present study, we designed, synthesized, and characterized 30 compounds including 15 chalcones (2-16) and 15 dihydropyrazoles (17-31) containing dichlorophenyl moiety and also screened these compounds for their antifungal, antitubercular, and antiproliferative activities. Among these compounds, the dihydropyrazoles showed excellent antifungal and antitubercular activities whereas the chalcones exhibited promising antiproliferative activity. Among the dihydropyrazoles, compound 31 containing 2-thienyl moiety showed promising antifungal activity (MIC 5.35 µM), whereas compounds 22 and 24 containing 2,4-difluorophenyl and 4-trifluoromethyl scaffolds revealed significant antitubercular activity with the MICs of 3.96 and 3.67 µM, respectively. Compound 16 containing 2-thienyl moiety in the chalcone series showed the highest anti-proliferative activity with an IC50 value of 17 ± 1 µM. The most active compounds identified through this study could be considered as starting points in the development of drugs with potential antifungal, antitubercular, and antiproliferative activities.


Assuntos
Antifúngicos/farmacologia , Antineoplásicos/farmacologia , Antituberculosos/farmacologia , Chalconas/farmacologia , Pirazóis/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Antituberculosos/síntese química , Antituberculosos/química , Aspergillus niger/efeitos dos fármacos , Candida tropicalis/efeitos dos fármacos , Linhagem Celular Tumoral , Chalconas/síntese química , Chalconas/química , Humanos , Mycobacterium tuberculosis/efeitos dos fármacos , Pirazóis/síntese química , Pirazóis/química , Relação Estrutura-Atividade
16.
Pharmaceutics ; 12(4)2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32326601

RESUMO

The emergence of resistant pathogens is a burden on mankind and threatens the existence of our species. Natural and plant-derived antimicrobial agents need to be developed in the race against antibiotic resistance. Nanotechnology is a promising approach with a variety of products. Biosynthesized silver nanoparticles (AgNP) have good antimicrobial activity. We prepared AgNPs with trans-cinnamic acid (TCA) and povidone-iodine (PI) with increased antimicrobial activity. We synthesized also AgNPs with natural cinnamon bark extract (Cinn) in combination with PI and coated biodegradable Polyglycolic Acid (PGA) sutures with the new materials separately. These compounds (TCA-AgNP, TCA-AgNP-PI, Cinn-AgNP, and Cinn-AgNP-PI) and their dip-coated PGA sutures were tested against 10 reference strains of microorganisms and five antibiotics by zone inhibition with disc- and agar-well-diffusion methods. The new compounds TCA-AgNP-PI and Cinn-AgNP-PI are broad spectrum microbicidal agents and therefore potential coating materials for sutures to prevent Surgical Site Infections (SSI). TCA-AgNP-PI inhibits the studied pathogens stronger than Cinn-AgNP-PI in-vitro and on coated sutures. Dynamic light scattering (DLS), ultraviolet-visible spectroscopy (UV-Vis), Fourier Transform infrared spectroscopy (FT-IR), Raman, x-ray diffraction (XRD), microstructural analysis by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) confirmed the composition of TCA-AgNP-PI and Cinn-AgNP-PI. Smart solutions involving hybrid materials based on synergistic antimicrobial action have promising future perspectives to combat resistant microorganisms.

17.
Pathogens ; 8(4)2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31658760

RESUMO

Antimicrobial agents containing symmetrical triiodides complexes with halogen bonding may release free iodine molecules in a controlled manner. This happens due to interactions with the plasma membrane of microorganisms which lead to changes in the structure of the triiodide anion. To verify this hypothesis, the triiodide complex [Na(12-crown-4)2]I3 was prepared by an optimized one-pot synthesis and tested against 18 clinical isolates, 10 reference strains of pathogens and five antibiotics. The antimicrobial activities of this symmetrical triiodide complex were determined by zone of inhibition plate studies through disc- and agar-well-diffusion methods. The triiodide complex proved to be a broad spectrum microbicidal agent. The biological activities were related to the calculated partition coefficient (octanol/water). The microstructural analysis of SEM and EDS undermined the purity of the triiodide complex. The anionic structure consists of isolated, symmetrical triiodide anions [I-I-I]- with halogen bonding. Computational methods were used to calculate the energy required to release iodine from [I-I-I]- and [I-I···I]-. The halogen bonding in the triiodide ion reduces the antibacterial activities in comparison to the inhibitory actions of pure iodine but increases the long term stability of [Na(12-crown-4)2]I3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...