Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(10): 5222-5227, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32094178

RESUMO

Sr2RuO4 has long been the focus of intense research interest because of conjectures that it is a correlated topological superconductor. It is the momentum space (k-space) structure of the superconducting energy gap [Formula: see text] on each band i that encodes its unknown superconducting order parameter. However, because the energy scales are so low, it has never been possible to directly measure the [Formula: see text] of Sr2RuO4 Here, we implement Bogoliubov quasiparticle interference (BQPI) imaging, a technique capable of high-precision measurement of multiband [Formula: see text] At T = 90 mK, we visualize a set of Bogoliubov scattering interference wavevectors [Formula: see text] consistent with eight gap nodes/minima that are all closely aligned to the [Formula: see text] crystal lattice directions on both the α and ß bands. Taking these observations in combination with other very recent advances in directional thermal conductivity [E. Hassinger et al., Phys. Rev. X 7, 011032 (2017)], temperature-dependent Knight shift [A. Pustogow et al., Nature 574, 72-75 (2019)], time-reversal symmetry conservation [S. Kashiwaya et al., Phys. Rev B, 100, 094530 (2019)], and theory [A. T. Rømer et al., Phys. Rev. Lett. 123, 247001 (2019); H. S. Roising, T. Scaffidi, F. Flicker, G. F. Lange, S. H. Simon, Phys. Rev. Res. 1, 033108 (2019); and O. Gingras, R. Nourafkan, A. S. Tremblay, M. Côté, Phys. Rev. Lett. 123, 217005 (2019)], the BQPI signature of Sr2RuO4 appears most consistent with [Formula: see text] having [Formula: see text] [Formula: see text] symmetry.

2.
Proc Natl Acad Sci U S A ; 116(27): 13249-13254, 2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31160468

RESUMO

The CuO2 antiferromagnetic insulator is transformed by hole-doping into an exotic quantum fluid usually referred to as the pseudogap (PG) phase. Its defining characteristic is a strong suppression of the electronic density-of-states D(E) for energies |E| < [Formula: see text], where [Formula: see text] is the PG energy. Unanticipated broken-symmetry phases have been detected by a wide variety of techniques in the PG regime, most significantly a finite-Q density-wave (DW) state and a Q = 0 nematic (NE) state. Sublattice-phase-resolved imaging of electronic structure allows the doping and energy dependence of these distinct broken-symmetry states to be visualized simultaneously. Using this approach, we show that even though their reported ordering temperatures T DW and T NE are unrelated to each other, both the DW and NE states always exhibit their maximum spectral intensity at the same energy, and using independent measurements that this is the PG energy [Formula: see text] Moreover, no new energy-gap opening coincides with the appearance of the DW state (which should theoretically open an energy gap on the Fermi surface), while the observed PG opening coincides with the appearance of the NE state (which should theoretically be incapable of opening a Fermi-surface gap). We demonstrate how this perplexing phenomenology of thermal transitions and energy-gap opening at the breaking of two highly distinct symmetries may be understood as the natural consequence of a vestigial nematic state within the pseudogap phase of Bi2Sr2CaCu2O8.

3.
Proc Natl Acad Sci U S A ; 113(45): 12661-12666, 2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27791157

RESUMO

Theories based upon strong real space (r-space) electron-electron interactions have long predicted that unidirectional charge density modulations (CDMs) with four-unit-cell (4a0) periodicity should occur in the hole-doped cuprate Mott insulator (MI). Experimentally, however, increasing the hole density p is reported to cause the conventionally defined wavevector QA of the CDM to evolve continuously as if driven primarily by momentum-space (k-space) effects. Here we introduce phase-resolved electronic structure visualization for determination of the cuprate CDM wavevector. Remarkably, this technique reveals a virtually doping-independent locking of the local CDM wavevector at [Formula: see text] throughout the underdoped phase diagram of the canonical cuprate Bi2Sr2CaCu2O8 These observations have significant fundamental consequences because they are orthogonal to a k-space (Fermi-surface)-based picture of the cuprate CDMs but are consistent with strong-coupling r-space-based theories. Our findings imply that it is the latter that provides the intrinsic organizational principle for the cuprate CDM state.

4.
Rev Sci Instrum ; 85(6): 065003, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24985843

RESUMO

We report the design and construction of piezoelectric-based apparatus for applying continuously tuneable compressive and tensile strains to test samples. It can be used across a wide temperature range, including cryogenic temperatures. The achievable strain is large, so far up to 0.23% at cryogenic temperatures. The apparatus is compact and compatible with a wide variety of experimental probes. In addition, we present a method for mounting high-aspect-ratio samples in order to achieve high strain homogeneity.

5.
Proc Natl Acad Sci U S A ; 111(30): E3026-32, 2014 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-24989503

RESUMO

The identity of the fundamental broken symmetry (if any) in the underdoped cuprates is unresolved. However, evidence has been accumulating that this state may be an unconventional density wave. Here we carry out site-specific measurements within each CuO2 unit cell, segregating the results into three separate electronic structure images containing only the Cu sites [Cu(r)] and only the x/y axis O sites [Ox(r) and O(y)(r)]. Phase-resolved Fourier analysis reveals directly that the modulations in the O(x)(r) and O(y)(r) sublattice images consistently exhibit a relative phase of π. We confirm this discovery on two highly distinct cuprate compounds, ruling out tunnel matrix-element and materials-specific systematics. These observations demonstrate by direct sublattice phase-resolved visualization that the density wave found in underdoped cuprates consists of modulations of the intraunit-cell states that exhibit a predominantly d-symmetry form factor.

6.
Science ; 344(6181): 283-5, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24744371

RESUMO

A sensitive probe of unconventional order is its response to a symmetry-breaking field. To probe the proposed p(x) ± ip(y) topological superconducting state of Sr2RuO4, we have constructed an apparatus capable of applying both compressive and tensile strains of up to 0.23%. Strains applied along ⟨100⟩ crystallographic directions yield a strong, strain-symmetric increase in the superconducting transition temperature T(c). ⟨110⟩ strains give a much weaker, mostly antisymmetric response. As well as advancing the understanding of the superconductivity of Sr2RuO4, our technique has potential applicability to a wide range of problems in solid-state physics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...