Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-32215421

RESUMO

Propene oxidation is one of the important reactions that occurs in the presence of a three-way catalyst but its reaction mechanism is unclear. The reaction mechanisms and differences in catalysis between Pd and Rh particles were investigated by DFT calculations employing Pd55 and Rh55 as the model catalysts. The O-attack mechanism, in which the O atom adsorbed on the Pd55 and Rh55 surfaces attacks the C[double bond, length as m-dash]C double bond of propene, needs to overcome a large activation barrier (Ea). On the other hand, C-H bond cleavage of the methyl group of propene easily occurs with moderate Ea; the mechanism initiated by this C-H activation is named H-transfer mechanism. In this mechanism, the next step is allyl alcohol formation, followed by the second C-H bond activation of the CH2OH species of allyl alcohol, and the final step is proton transfer from OH-substituted π-allyl species to the OH group on the metal surface to yield acrolein and water molecules with the regeneration of M55. The rate-determining step is the second C-H bond activation. Its Ea is 17.4 kcal mol-1 for the reaction on Pd55 and 34.4 kcal mol-1 for the reaction on Rh55. These results indicate that Pd particles are more active than Rh particles in propene oxidation, which agrees with the experimental findings. The larger Ea for Rh55 than that for Pd55 arises from the stronger Rh-OH bond than the Pd-OH bond. The higher energy d-valence band-top of Rh55 than that of Pd55 is the origin of the stronger Rh-OH bond than the Pd-OH bond. Thus, the d-valence band-top energy is an important property for understanding and designing catalysts for alkene oxidation.

2.
Phys Chem Chem Phys ; 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32068766

RESUMO

The successful synthesis and isolation of cyclo-C18 in experiments is a ground-breaking development in carbon rings. Herein, we studied the thermodynamic stabilities of cyclo-Cn (4 ≤ n ≤ 34) with hybrid density functional theory. When n = 4N + 2 (N is an integer), cyclo-Cn were thermodynamically stable. In particular, cyclo-C10 and cyclo-C14 were more thermodynamically, kinetically, dynamically, and optically stable compared with the acknowledged cyclo-C18, and were potential candidates for zero-dimensional carbon rings. Cyclo-Cn (n = 10 and 14) show similar molecular semiconductor characteristics to the acknowledged cyclo-C18. The carbon atoms were sp hybridized in cyclo-C10, cyclo-C14, and cyclo-C18. Cyclo-C14 and cyclo-C18 had alternating abnormal single and triple bonds, but cyclo-C10 had equal bonds. Cyclo-C10, cyclo-C14, and cyclo-C18 with large aromaticities had out-of-plane and in-plane π systems, which were perpendicular to each other. The number of π electrons in the out-of-plane and in-plane π systems, respectively, followed the standard Hückel aromaticity rule. Simulated UV-vis-NIR spectra indicated similar electronic structures of cyclo-C14 and cyclo-C18.

3.
J Chem Theory Comput ; 16(4): 2606-2616, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32105477

RESUMO

Electronic resonances are metastable (N + 1) electron states, in other words, discrete states embedded in an electronic continuum. While great progress has been made for certain types of resonances-for example, temporary anions created by attaching one excess electron to a closed shell neutral-resonances in general remain a great challenge of quantum chemistry because a successful description of the decay requires a balanced description of the bound and continuum aspect of the resonance. Here, a smoothed Voronoi complex absorbing potential (CAP) is combined with the XMS-CASPT2 method, which enables us to address the balance challenge by appropriate choice of the CAS space. To reduce the computational cost, the method is implemented in the projected scheme. In this pilot application, three temporary anions serve as benchmarks: the π* resonance state of formaldehyde; the π* and σ* resonance states of chloroethene as functions of the C-Cl bond dissociation coordinate; and the 4Πu and 2Πu resonance states of N2-. The convergence of the CAP/XMS-CASPT2 results has been systematically examined with respect to the size of the active space. Resonance parameters predicted by the CAP/XMS-CASPT2 method agree well with CAP/SAC-CI results (deviations of about 0.15 eV); however, as expected, CAP/XMS-CASPT2 has clear advantages in the bond dissociation region. The advantages of CAP/XMS-CASPT2 are further demonstrated in the calculations of 4Πu and 2Πu resonance states of N2- including their 3Σu+ and 3Δu parent states. Three of the involved states (2Πu, 3Σu+, and 3Δu) possess multireference character, and CAP/XMS-CASPT2 can easily describe these states with a relatively modest active space.

4.
Inorg Chem ; 59(3): 1940-1946, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-31961666

RESUMO

Six dierbium carbide endohedral metallofullerenes have been synthesized and chromatographically isolated. Single-crystal X-ray diffractometry unambiguously ascertains their structures as Er2C2@C2v(5)-C80, Er2C2@Cs(6)-C82, Er2C2@Cs(15)-C84, Er2C2@C2v(9)-C86, Er2C2@Cs(15)-C86, and Er2C2@Cs(32)-C88, respectively. The Er···Er distances of the major erbium sites inside the Cs(6)-C82, C2v(5)-C80, Cs(15)-C84, Cs(15)-C86, C2v(9)-C86, and Cs(32)-C88 cages are 3.801, 3.860, 4.062, 4.066, 4.307, and 4.372 Å, respectively, which show a linear tendency with an increase in the major axis of the fullerene cages (8.064, 8.238, 8.508, 8.582, 8.815, and 8.953 Å, respectively). Furthermore, the electrochemical and molecular orbital analyses reveal that the redox chemistry of the Er2C2@C80-88 isomers is associated with the carbon cage, which is different from the situations found for typical dimetallofullerenes, such as Y2@C82, Er2@C82-84, and Lu2@C82,86 isomers, which show metal-dependent oxidation processes, indicating the importance of C2 insertion in carbide cluster metallofullerenes.

5.
J Phys Chem A ; 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-31977215

RESUMO

Previously, our group reported dual-emission spectra for tris(2-hydroxyphenyl)triazasumanene (OHPhTAS), comprising three OH···N-type intramolecular hydrogen bonds from three phenolic rings connected to the nitrogen-doped buckybowl skeleton, corresponding to the excited state intramolecular proton transfer (ESIPT) in the solid state. However, the dual emission is not observed in a nonpolar solution. In this study, the mechanism and multiplicity of potentially photoinduced dynamic ESIPT were investigated both in ground (S0) and in excited states (S1) by time-dependent density functional theory calculations. Different pathways, concerted and stepwise (single, double, or triple) PT processes, are considered. The calculated vertical emission energies (S1 → S0 states) and adiabatic total energies at S0 and S1 states of OHPhTAS and its tautomers revealed that a single PT, trienol (EEE) → monoketo (KEE), is the main contribution in OHPhTAS with an ultrasmall PT energy barrier. The nonradiative decay of OHPhTAS was analyzed by the potential energy curve (PEC) at the S1 state along EEE* to KEE*. The results indicated that nonradiative decay was prohibited in the solid state but significantly stabilized in nonpolar solutions. The nonradiative routes in the solution state were confirmed by the minimum energy crossing point of the T1/S0 pathway, wherein the dihedral angle φ between the phenolic ring and pyridine moiety on the buckybowl structure relaxed to 123°.

6.
Inorg Chem ; 58(20): 14159-14166, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31596576

RESUMO

Triplet U@C1(28324)-C80, violating the isolated pentagon rule, is experimentally recognized as the stable isomer for uranium-based endohedral monometallofullerene U@C80. Here we first verified that triplet U@D3(31921)-C80, following the isolated pentagon rule, was to be another thermodynamically stable isomer via density functional theory in conjunction with statistical thermodynamic analysis. U@D3(31921)-C80 was probably missing in the previous experiment and would be a promising isomer in the to-be experiment because of its excellently thermodynamic stability. In addition, the anomalous metal position was revealed in U@D3(31921)-C80 and U@C1(28324)-C80. Four-electron transfer from U to C80 was also revealed for the two isomers. Thus, two unpaired 5f electrons were still in the U for U@D3(31921)-C80 and U@C1(28324)-C80. Moreover, the covalent interactions between U and C80 in U@D3(31921)-C80 were stronger than those in U@C1(28324)-C80. The electrostatic interactions preponderated in the interaction energy ΔEint between U and C80 for U@C1(28324)-C80, and the orbital interactions dominated in the ΔEint for U@D3(31921)-C80. The electrophilic and nucleophilic reactivities were also analyzed for U@D3(31921)-C80 and U@C1(28324)-C80. Electronic circular dichroism spectra were simulated to distinguish the two enantiomers of U@C1(28324)-C80. We are hopeful that this investigation will be valuable for further identification of the two enantiomers in future experiments.

7.
Chem Commun (Camb) ; 55(91): 13757-13760, 2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31663535

RESUMO

Single-walled carbon nanotubes with designed quantum defects are prepared and characterized. The photoluminescence (PL) of the nanotubes can be modified by thermal treatment from 1215-1224 to 1249-1268 nm. Theoretical calculations suggest that the change in the PL spectra by thermal treatment can be explained by isomerization from kinetic to thermodynamic products.

8.
Chem Commun (Camb) ; 55(84): 12603-12606, 2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31556435

RESUMO

Single-size platinum Pt6 subnanoclusters exhibit superior mass-specific and surface-specific activities for the oxygen reduction reaction. The enhanced activity is attributed to polarized electron distributions based on rigorous structure characterization by X-ray absorption fine structure spectroscopy and density functional theory.

9.
Nanoscale ; 11(37): 17319-17326, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31513222

RESUMO

For endohedral metallofullerenes (EMFs), that is, fullerenes encapsulating metallic species, cage size is known to be an important factor for cluster configuration adoption; however, the impact of the cage shape on the cluster geometry fitting remains poorly understood. Herein, for the first time, four dierbium-carbide EMFs with C90 cages, namely, Er2C2@C2(43)-C90, Er2C2@C2(40)-C90, Er2C2@C2(44)-C90, and Er2C2@C1(21)-C90, were successfully synthesized and fully characterized using a combination of mass spectrometry, single-crystal X-ray diffractometry, vis-NIR, Raman and photoluminescence spectroscopies, and cyclic voltammetry. In particular, the fullerene cages of C2(43)-C90 and C2(44)-C90 are crystallographically identified for the first time. Interestingly, the ErEr distance of the major sites in Er2C2@C2(43)-C90, Er2C2@C2(40)-C90, Er2C2@C2(44)-C90, and Er2C2@C1(21)-C90 is 3.927, 4.058, 4.172, and 4.651 Å, respectively, which increases gradually with an increase in the major axis of the cage. Moreover, the bond length of the inner C2-unit decreases progressively with an increase in the ErEr distance, indicating that the inserted C2-unit can serve as a molecular spring to support the strong metal-cage interactions within cages with the same size but different shapes. Hence, the role of cage shape on the cluster configuration is unveiled safely for the as-obtained Er2C2@C90 isomers.

10.
Inorg Chem ; 58(16): 10769-10777, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31385498

RESUMO

Mixed-metal uranium-based endohedral clusterfullerenes, Sc2UX@C80 (X = C, N), which were recently reported in experiments, have been investigated considering heptagon-containing isomers by density functional theory calculations in conjunction with statistical thermodynamic analysis. The triplet Sc2UC@Ih(31924)-C80 and quartet Sc2UN@Ih(31924)-C80, named after the spiral number (31924), are found to be thermodynamically stable and satisfy aromaticity rules. Furthermore, the restricted movements of the Sc2UX (X = C, N) cluster in Ih(31924)-C80 have been demonstrated via ab initio molecular dynamics simulations. The six-electron transfer from the inner cluster to the cage results in the electronic structures (Sc2UX)6+@C806- (X = C, N), which were also confirmed by natural bond orbital analysis. On the basis of the frontier molecular orbitals, the oxidation states of uranium in Sc2UC@C80 and Sc2UN@C80 are +IV and +III, respectively, with residual electrons in 5f orbitals of U. The chemical bond between U and C (N) of the inner cluster is characterized as a double bond (single bond) by an analysis of the Mayer bond orders. There are covalent interactions between the inner cluster and outer cage, which is clarified by the quantum theory of atoms in molecules. IR spectra of the optimal isomers have also been simulated, which show the clear difference between Sc2UX@C80 (X = C, N). These findings, together with simulated results, are expected to supply useful information in future experiments of mixed-metal uranium-based endohedral clusterfullerenes.

11.
ACS Omega ; 4(2): 2596-2609, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-31459495

RESUMO

Density functional theory calculations here elucidated that Cu38-catalyzed NO reduction by CO occurred not through NO dissociative adsorption but through NO dimerization. NO is adsorbed to two Cu atoms in a bridging manner. NO adsorption energy is much larger than that of CO. N-O bond cleavage of the adsorbed NO molecule needs a very large activation energy (ΔG°‡). On the other hand, dimerization of two NO molecules occurs on the Cu38 surface with small ΔG°‡ and very negative Gibbs reaction energy (ΔG°) to form ONNO species adsorbed to Cu38. Then, a CO molecule is adsorbed at the neighboring position to the ONNO species and reacts with the ONNO to induce N-O bond cleavage with small ΔG°‡ and very negative ΔG°, leading to the formation of N2O adsorbed on Cu38 and CO2 molecule in the gas phase. N2O dissociates from Cu38, and then it is readsorbed to Cu38 in the most stable adsorption structure. N-O bond cleavage of N2O easily occurs with small ΔG°‡ and significantly negative ΔG° to form the N2 molecule and the O atom adsorbed on Cu38. The O atom reacts with the CO molecule to afford CO2 and regenerate Cu38, which is rate-determining. N2O species was experimentally observed in Cu/γ-Al2O3-catalyzed NO reduction by CO, which is consistent with this reaction mechanism. This mechanism differs from that proposed for the Rh catalyst, which occurs via N-O bond cleavage of the NO molecule. Electronic processes in the NO dimerization and the CO oxidation with the O atom adsorbed to Cu38 are discussed in terms of the charge-transfer interaction with Cu38 and Frontier orbital energy of Cu38.

12.
J Comput Chem ; 40(31): 2730-2738, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31433074

RESUMO

The thermodynamic and dynamic stabilities of Sc3 X@C80 (X = C, N, and O) are explored via density functional theory combined with statistical thermodynamic analysis and ab initio molecular dynamics. It is the first time to comprehensively consider the effect of nonmetal atoms on trimetallic endohedral clusterfullerenes. Relative to Sc3 X@Ih (31924)-C80 (X = N and O) with general six-electron transfer, an intriguing electronic structure of unexplored Sc3 C@D5h (31923)-C80 with thermodynamic and dynamic stabilities is clearly disclosed. Natural bond orbitals and charge decomposition analysis simultaneously suggest that one unpaired electron appears on the cage for neutral Sc3 C@D5h (31923)-C80 , which could be prospectively stabilized by effective exohedral derivatization and ionization in the future. Moreover, isoelectronic endohedral clusterfullerenes, (Sc3 C@C80 )- , Sc3 N@C80 , and (Sc3 O@C80 )+ , are also uniquely taken into account. The geometries, electronic structures, reactivities, and reactive sites of isoelectronic species are examined, and it turns out that all the three isoelectronic species would rather electrophilic than nucleophilic reactions. © 2019 Wiley Periodicals, Inc.

13.
J Phys Chem A ; 123(32): 7021-7033, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31313931

RESUMO

Reaction of NO molecule on M13 and M55 clusters (M = Ru, Rh, Pd, and Ag) was theoretically investigated to elucidate why its reaction behavior depends on the position of metal element in the periodic table. DFT computations show that NO dissociative adsorption occurs on M = Ru and Rh, NO molecular adsorption occurs on M = Pd, and NO dimerization occurs on M = Ag, which agree with experimental findings. The d-band center and d-band top become lower in energy following the order Ru > Rh > Pd > Ag; this is one of the characteristic features of the periodic table. In the Ag cluster, the valence band-top consists of Ag 5s orbital and its energy is higher than the d-band top of Pd. For NO dissociative adsorption, the M-N and M-O bond strengths are crucially important at the transition state and the product, to which the metal d orbital contributes very much. Ru and Rh clusters have a high energy d-band center and d-valence band top, leading to the formation of strong M-N and M-O bonds. Pd and Ag clusters have a low energy d-band center and d-band top, leading to the formation of weak M-N and M-O bonds. Because the Ag cluster has a high energy 5s valence band that can overlap well with the π* + π* MO of ONNO (NO dimer) moiety due to the same symmetry, charge transfer (CT) occurs from the Ag cluster to the π* + π* MO, which is indispensable for NO dimerization. The 4d-valence band top of Ru and Rh clusters does not fit to the π* + π* MO because of the different symmetry. Though the d-valence band top of the Pd cluster can overlap with the π* + π* MO, its energy is low, which is not good for the CT. Thus, the reactivity of metal cluster for NO is determined by the energy and type (4d or 5s) of the valence band top, which both depend on the position of element in the periodic table; accordingly, Ru and Rh clusters are reactive for NO dissociative adsorption, the Ag cluster is reactive for NO dimerization, but the Pd cluster is not reactive for both and only NO molecular adsorption is possible.

14.
Nanoscale ; 11(28): 13415-13422, 2019 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-31276150

RESUMO

A series of Er-based nitride clusterfullerenes (NCFs), Er3N@C80-88, have been successfully synthesized and isolated. In particular, Er3N@Ih(7)-C80, Er3N@D5h(6)-C80, Er3N@C2v(9)-C82, Er3N@Cs(51365)-C84, and Er3N@D2(35)-C88 have been characterized by single-crystal X-ray diffraction (XRD) for the first time. The planar configuration of the inserted Er3N cluster is identified unambiguously and the Er-N distances increase in accordance with cage expansion to maintain strong metal-cage interactions. Additionally, the electrochemical properties of the Er3N@C80-88 series are studied by means of cyclic voltammetry. It is found that the first reduction potentials are roughly similar for all compounds under study, while the first oxidation potentials are cathodically shifted along with the increase of the cage size in the Er3N@C2n (2n = 80, 84, 86, 88) series, leading to a decrease in the corresponding electrochemical band gaps. Nevertheless, for Er3N@C2v(9)-C82, a good electron donating ability is manifested by its relatively small first oxidation potential, which results from the relatively higher energy level of the highest occupied molecular orbital. The redox behaviors observed in such Er3N-based NCFs may promise their great potential applications in donor-acceptor systems.

15.
Phys Chem Chem Phys ; 21(36): 19755-19763, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31259349

RESUMO

The electronic states and photochemistry including nonradiative decay (NRD) and trans(E) → cis(Z) isomerization of methylcinnamate (MC) and its hydrogen-bonded complex with methanol have been investigated under jet-cooled conditions. S1(1nπ*) and S2(1ππ*) are directly observed in MC. This is the first direct observation of S1(1nπ*) in cinnamate derivatives. Surprisingly, the order of the energies between the nπ* and ππ* states is opposite to substituted cinnamates. TD-DFT and SAC-CI calculations support the observed result and show that the substitution to the benzene ring largely lowers the 1ππ* energy while the effect on 1nπ* is rather small. The S2(ππ*) state lifetime of MC is determined to be equal to or shorter than 10 ps, and the production of the transient T1 state is observed. The T1(ππ*) state is calculated to have a structure in which propenyl C[double bond, length as m-dash]C is twisted by 90°, suggesting the trans → cis isomerization proceeds via T1. The production of the cis isomer is confirmed by low-temperature matrix-isolated FTIR spectroscopy. The effect of H-bonding is examined for the MC-methanol complex. The S2 lifetime of MC-methanol is determined to be 180 ps, indicating that the H-bonding to the C[double bond, length as m-dash]O group largely prohibits the 1ππ* → 1nπ* internal conversion. This lifetime elongation in the methanol complex also describes well a higher fluorescence quantum yield of MC in methanol solution than in cyclohexane, while such a solvent dependence is not observed in para-substituted MC. Determination of the photochemical reaction pathways of MC and MC-methanol will help us to design photofunctional cinnamate derivatives.

16.
Nat Commun ; 10(1): 2455, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31165729

RESUMO

Artificial molecular switches and machines that enable the directional movements of molecular components by external stimuli have undergone rapid advances over the past several decades. Particularly, overcrowded alkene-based artificial molecular motors are highly attractive from the viewpoint of chirality switching during rotational steps. However, the integration of these molecular switches into solid-state devices is still challenging. Herein, we present an example of a solid-state spin-filtering device that can switch the spin polarization direction by light irradiation or thermal treatment. This device utilizes the chirality inversion of molecular motors as a light-driven reconfigurable spin filter owing to the chiral-induced spin selectivity effect. Through this device, we found that the flexibility at the molecular scale is essential for the electrodes in solid-state devices using molecular machines. The present results are beneficial to the development of solid-state functionalities emerging from nanosized motions of molecular switches.

17.
Chemistry ; 25(14): 3650-3661, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30623493

RESUMO

The heat-resistant properties towards thermal emission quenching of trans-bis[(ß-iminomethyl)aryloxy]platinum(II) complexes bearing 3-iminomethyl-2-naphtholato- (1), 1-iminomethyl-2-naphtholato- (2), 2-iminomethyl-1-naphtholato- (3), and 2-iminomethyl-1-phenolato (4) moieties, and a mechanistic rationale of these properties, are described in this report. Complex 1 a, with N,N'-dipentyl groups, exhibits intense red emission in 2-methyl-2,3,4,5-tetrahydrofuran (2-MeTHF) at 298 K, whereas the analogues 2 a-4 a are less or non-emissive under the same measurement conditions. All four complexes are highly emissive at 77 K. The heat-resistant properties toward thermal emission quenching (Φ298 K /Φ77 K ) increase in the order 1 a (0.52)>2 a (0.09)>3 a (0.02)>>4 a (0.00). We investigated the emission decay and thermal-deactivation processes using density functional theory (DFT), time-dependent (TD) DFT, and double-hybrid density functional theory (DHDF) calculations of N,N'-diethyl forms 1 b-4 b, and discuss the results with a focus on the energy levels, molecular structures, and electronic configurations in the triplet excited states. The energy differences between the triplet metal-ligand charge transfer (3 MLCT) state and minimum-energy crossing point between the lowest triplet state and singlet ground state (MECP) increase in the order 1 a>2 a, 3 a>4 a, consistent with the experimental results for the heat-resistant properties of these complexes. The origin of the present structure dependence of the 3 MLCT-MECP energy gap is ascribed to the ease or difficulty of the high-lying dσ* orbital participating in the MECP upon thermal structural distortion. The structure dependence in energy gaps between the π* and dσ* orbitals, which is key for facilitating the thermal deactivation process, is rationally correlated with the extent of aromaticity on the coordination platforms (1 b>(2 b, 3 b)>4 b).

18.
Chem Rec ; 19(5): 947-959, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30663242

RESUMO

The gold-palladium (Au-Pd) bimetallic nanocluster (NC) catalyst in colloidal phase performs the homocoupling reaction of various aryl chlorides (Ar-Cl) under ambient conditions. We have systematically investigated various aspects of the Au-Pd NC catalysts with respect to this homocoupling reaction by using density functional theory (DFT) calculations, genetic algorithm (GA) approaches, and molecular dynamics (MD) simulations. Our findings include the geometric and electronic structures of the Au-Pd NC, the reactive Pd sites on the NC surface, the electron-donating effects of surrounding polymer matrix, the reaction mechanism of homocoupling reaction and rate-determining step, the inverse halogen dependence of the reaction, and the solvation dynamics at interface region between NC and polymer matrix in aqueous solution.

19.
J Comput Chem ; 40(1): 181-190, 2019 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-30378149

RESUMO

Experimentally observed NO dimerization on Cu and Ag surfaces is surprising because binding energy of NO dimer is very small in gas phase. MRMP2, MP2 to MP4, CCSD(T), and DFT studies of NO dimerization on Ag2 and Cu2 clusters disclosed that the CCSD(T) method could be applied to this reaction on Ag2 and Cu2 unlike NO dimerization in gas phase which exhibits significantly large nondynamical electron correlation effect. Charge-transfer (CT) from Ag2 and Cu2 to NO moieties plays important role in NN bond formation between two NO molecules. This CT considerably decreases nondynamical correlation effect. Also, the DFT method could be applied to this NO dimerization, if appropriate DFT functional is used; all pure functionals examined here and most of the hybrid functionals underestimated the activation barrier (Ea ), while only ωB97X provided Ea similar to CCSD(T)-calculated value. NO dimerization on similar Cu2 and Cu5 needs moderately larger Ea than those on Ag2 and Ag5 , because frontier orbital participating in the CT exists at lower energy in Cu2 and Cu5 than in Ag2 and Ag5 . The Ea decreases in the order Ag2 >> Ag38 > Ag7 ∼ Ag5 and the reaction energy (ΔE) is positive (endothermic) in Ag2 but significantly negative in Ag38 , Ag7 , and Ag5 , indicating that various Ag clusters could be effective for NO dimerization except for Ag2 . The decreasing order of Ea and increasing order of exothermicity are attributed to increasing order of the frontier orbital energy of Ag2 < Ag38 < Ag7 ∼ Ag5 . © 2018 Wiley Periodicals, Inc.

20.
J Comput Chem ; 40(1): 127-134, 2019 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-30144120

RESUMO

Recently, exciton-controlled hybridization-sensitive fluorescent oligonucleotide (ECHO) probe, which shows strong emission in the near-infrared region via hybridization to the target DNA and/or RNA strand, has been developed. In this work, photophysical properties of the chromophores of these probes and the fluorescent mechanism have been investigated by the SAC-CI and TD-DFT calculations. Three fluorescent cyanine chromophores whose excitation is challenging for TD-DFT methods, have been examined regarding the photo-absorption and emission spectra. The SAC-CI method well reproduces the experimental values with respect to transition energies, while the quantitative prediction by TD-DFT calculations is difficult for these chromophores. Some stable structures of H-aggregate system were computationally located and two of the configurations were examined for the photo-absorption. The present results support for the assumption based on experimental measurement in which strong fluorescence is due to the monomer unit in nearly planar structure and its suppression of probes is to the H-aggregates of two exciton units. Stokes shifts of these three chromophores were qualitatively reproduced by the theoretical calculations, while the energy splitting due to H-aggregate in the hybridized probe was slightly overestimated. © 2018 Wiley Periodicals, Inc.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA