Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Eur Radiol ; 2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35184218

RESUMO

OBJECTIVES: We aimed to develop deep learning models using longitudinal chest X-rays (CXRs) and clinical data to predict in-hospital mortality of COVID-19 patients in the intensive care unit (ICU). METHODS: Six hundred fifty-four patients (212 deceased, 442 alive, 5645 total CXRs) were identified across two institutions. Imaging and clinical data from one institution were used to train five longitudinal transformer-based networks applying five-fold cross-validation. The models were tested on data from the other institution, and pairwise comparisons were used to determine the best-performing models. RESULTS: A higher proportion of deceased patients had elevated white blood cell count, decreased absolute lymphocyte count, elevated creatine concentration, and incidence of cardiovascular and chronic kidney disease. A model based on pre-ICU CXRs achieved an AUC of 0.632 and an accuracy of 0.593, and a model based on ICU CXRs achieved an AUC of 0.697 and an accuracy of 0.657. A model based on all longitudinal CXRs (both pre-ICU and ICU) achieved an AUC of 0.702 and an accuracy of 0.694. A model based on clinical data alone achieved an AUC of 0.653 and an accuracy of 0.657. The addition of longitudinal imaging to clinical data in a combined model significantly improved performance, reaching an AUC of 0.727 (p = 0.039) and an accuracy of 0.732. CONCLUSIONS: The addition of longitudinal CXRs to clinical data significantly improves mortality prediction with deep learning for COVID-19 patients in the ICU. KEY POINTS: • Deep learning was used to predict mortality in COVID-19 ICU patients. • Serial radiographs and clinical data were used. • The models could inform clinical decision-making and resource allocation.

3.
NPJ Digit Med ; 5(1): 5, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35031687

RESUMO

While COVID-19 diagnosis and prognosis artificial intelligence models exist, very few can be implemented for practical use given their high risk of bias. We aimed to develop a diagnosis model that addresses notable shortcomings of prior studies, integrating it into a fully automated triage pipeline that examines chest radiographs for the presence, severity, and progression of COVID-19 pneumonia. Scans were collected using the DICOM Image Analysis and Archive, a system that communicates with a hospital's image repository. The authors collected over 6,500 non-public chest X-rays comprising diverse COVID-19 severities, along with radiology reports and RT-PCR data. The authors provisioned one internally held-out and two external test sets to assess model generalizability and compare performance to traditional radiologist interpretation. The pipeline was evaluated on a prospective cohort of 80 radiographs, reporting a 95% diagnostic accuracy. The study mitigates bias in AI model development and demonstrates the value of an end-to-end COVID-19 triage platform.

4.
Front Aging Neurosci ; 13: 716102, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34759810

RESUMO

Assessing the progression of movement disorders such as Parkinson's Disease (PD) is key in adjusting therapeutic interventions. However, current methods are still based on subjective factors such as visual observation, resulting in significant inter-rater variability on clinical scales such as UPDRS. Recent studies show the potential of sensor-based methods to address this limitation. The goal of this systematic review is to provide an up-to-date analysis of contactless sensor-based methods to estimate hand dexterity UPDRS scores in PD patients. Two hundred and twenty-four abstracts were screened and nine articles selected for analysis. Evidence obtained in a cumulative cohort of n = 187 patients and 1, 385 samples indicates that contactless sensors, particularly the Leap Motion Controller (LMC), can be used to assess UPDRS hand motor tasks 3.4, 3.5, 3.6, 3.15, and 3.17, although accuracy varies. Early evidence shows that sensor-based methods have clinical potential and might, after refinement, complement, or serve as a support to subjective assessment procedures. Given the nature of UPDRS assessment, future studies should observe whether LMC classification error falls within inter-rater variability for clinician-measured UPDRS scores to validate its clinical utility. Conversely, variables relevant to LMC classification such as power spectral densities or movement opening and closing speeds could set the basis for the design of more objective expert systems to assess hand dexterity in PD.

5.
J Public Health Policy ; 42(4): 602-611, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34811466

RESUMO

Population and public health are in the midst of an artificial intelligence revolution capable of radically altering existing models of care delivery and practice. Just as AI seeks to mirror human cognition through its data-driven analytics, it can also reflect the biases present in our collective conscience. In this Viewpoint, we use past and counterfactual examples to illustrate the sequelae of unmitigated bias in healthcare artificial intelligence. Past examples indicate that if the benefits of emerging AI technologies are to be realized, consensus around the regulation of algorithmic bias at the policy level is needed to ensure their ethical integration into the health system. This paper puts forth regulatory strategies for uprooting bias in healthcare AI that can inform ongoing efforts to establish a framework for federal oversight. We highlight three overarching oversight principles in bias mitigation that maps to each phase of the algorithm life cycle.


Assuntos
Inteligência Artificial , Equidade em Saúde , Atenção à Saúde , Humanos , Políticas
6.
AMIA Jt Summits Transl Sci Proc ; 2021: 102-111, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34457124

RESUMO

Electronic Health Records (EHRs) have become the primary form of medical data-keeping across the United States. Federal law restricts the sharing of any EHR data that contains protected health information (PHI). De-identification, the process of identifying and removing all PHI, is crucial for making EHR data publicly available for scientific research. This project explores several deep learning-based named entity recognition (NER) methods to determine which method(s) perform better on the de-identification task. We trained and tested our models on the i2b2 training dataset, and qualitatively assessed their performance using EHR data collected from a local hospital. We found that 1) Bi-LSTM-CRF represents the best-performing encoder/decoder combination, 2) character-embeddings tend to improve precision at the price of recall, and 3) transformers alone under-perform as context encoders. Future work focused on structuring medical text may improve the extraction of semantic and syntactic information for the purposes of EHR deidentification.


Assuntos
Benchmarking , Anonimização de Dados , Registros Eletrônicos de Saúde , Humanos , Estados Unidos
7.
Med Phys ; 48(11): 7154-7171, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34459001

RESUMO

PURPOSE: Automatic localization of pneumonia on chest X-rays (CXRs) is highly desirable both as an interpretive aid to the radiologist and for timely diagnosis of the disease. However, pneumonia's amorphous appearance on CXRs and complexity of normal anatomy in the chest present key challenges that hinder accurate localization. Existing studies in this area are either not optimized to preserve spatial information of abnormality or depend on expensive expert-annotated bounding boxes. We present a novel generative adversarial network (GAN)-based machine learning approach for this problem, which is weakly supervised (does not require any location annotations), was trained to retain spatial information, and can produce pixel-wise abnormality maps highlighting regions of abnormality (as opposed to bounding boxes around abnormality). METHODS: Our method is based on the Wasserstein GAN framework and, to the best of our knowledge, the first application of GANs to this problem. Specifically, from an abnormal CXR as input, we generated the corresponding pseudo normal CXR image as output. The pseudo normal CXR is the "hypothetical" normal, if the same abnormal CXR were not to have any abnormalities. We surmise that the difference between the pseudo normal and the abnormal CXR highlights the pixels suspected to have pneumonia and hence is our output abnormality map. We trained our algorithm on an "unpaired" data set of abnormal and normal CXRs and did not require any location annotations such as bounding boxes/segmentations of abnormal regions. Furthermore, we incorporated additional prior knowledge/constraints into the model and showed that they help improve localization performance. We validated the model on a data set consisting of 14 184 CXRs from the Radiological Society of North America pneumonia detection challenge. RESULTS: We evaluated our methods by comparing the generated abnormality maps with radiologist annotated bounding boxes using receiver operating characteristic (ROC) analysis, image similarity metrics such as normalized cross-correlation/mutual information, and abnormality detection rate.We also present visual examples of the abnormality maps, covering various scenarios of abnormality occurrence. Results demonstrate the ability to highlight regions of abnormality with the best method achieving an ROC area under the curve (AUC) of 0.77 and a detection rate of 85%.The GAN tended to perform better as prior knowledge/constraints were incorporated into the model. CONCLUSIONS: We presented a novel GAN based approach for localizing pneumonia on CXRs that (1) does not require expensive hand annotated location ground truth; and (2) was trained to produce abnormality maps at the pixel level as opposed to bounding boxes. We demonstrated the efficacy of our methods via quantitative and qualitative results.


Assuntos
Pneumonia , Algoritmos , Humanos , Pneumonia/diagnóstico por imagem , Curva ROC , Radiografia , Raios X
8.
J Ultrasound Med ; 40(8): 1495-1504, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33038035

RESUMO

OBJECTIVES: To create a deep learning algorithm capable of video classification, using a long short-term memory (LSTM) network, to analyze collapsibility of the inferior vena cava (IVC) to predict fluid responsiveness in critically ill patients. METHODS: We used a data set of IVC ultrasound (US) videos to train the LSTM network. The data set was created from IVC US videos of spontaneously breathing critically ill patients undergoing intravenous fluid resuscitation as part of 2 prior prospective studies. We randomly selected 90% of the IVC videos to train the LSTM network and 10% of the videos to test the LSTM network's ability to predict fluid responsiveness. Fluid responsiveness was defined as a greater than 10% increase in the cardiac index after a 500-mL fluid bolus, as measured by bioreactance. RESULTS: We analyzed 211 videos from 175 critically ill patients: 191 to train the LSTM network and 20 to test it. Using standard data augmentation techniques, we increased our sample size from 191 to 3820 videos. Of the 175 patients, 91 (52%) were fluid responders. The LSTM network was able to predict fluid responsiveness moderately well, with an area under the receiver operating characteristic curve of 0.70 (95% confidence interval [CI], 0.43-1.00), a positive likelihood ratio of infinity, and a negative likelihood ratio of 0.3 (95% CI, 0.12-0.77). In comparison, point-of-care US experts using video review offline and manual diameter measurement via software caliper tools achieved an area under the receiver operating characteristic curve of 0.94 (95% CI, 0.83-0.99). CONCLUSIONS: We demonstrated that an LSTM network can be trained by using videos of IVC US to classify IVC collapse to predict fluid responsiveness. Our LSTM network performed moderately well given the small training cohort but worse than point-of-care US experts. Further training and testing of the LSTM network with a larger data sets is warranted.


Assuntos
Aprendizado Profundo , Choque , Hidratação , Humanos , Estudos Prospectivos , Veia Cava Inferior/diagnóstico por imagem
9.
Brief Bioinform ; 22(4)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-33126246

RESUMO

An interaction between pharmacological agents can trigger unexpected adverse events. Capturing richer and more comprehensive information about drug-drug interactions (DDIs) is one of the key tasks in public health and drug development. Recently, several knowledge graph (KG) embedding approaches have received increasing attention in the DDI domain due to their capability of projecting drugs and interactions into a low-dimensional feature space for predicting links and classifying triplets. However, existing methods only apply a uniformly random mode to construct negative samples. As a consequence, these samples are often too simplistic to train an effective model. In this paper, we propose a new KG embedding framework by introducing adversarial autoencoders (AAEs) based on Wasserstein distances and Gumbel-Softmax relaxation for DDI tasks. In our framework, the autoencoder is employed to generate high-quality negative samples and the hidden vector of the autoencoder is regarded as a plausible drug candidate. Afterwards, the discriminator learns the embeddings of drugs and interactions based on both positive and negative triplets. Meanwhile, in order to solve vanishing gradient problems on the discrete representation-an inherent flaw in traditional generative models-we utilize the Gumbel-Softmax relaxation and the Wasserstein distance to train the embedding model steadily. We empirically evaluate our method on two tasks: link prediction and DDI classification. The experimental results show that our framework can attain significant improvements and noticeably outperform competitive baselines. Supplementary information: Supplementary data and code are available at https://github.com/dyf0631/AAE_FOR_KG.


Assuntos
Desenvolvimento de Medicamentos , Interações Medicamentosas , Redes Neurais de Computação , Reconhecimento Automatizado de Padrão
11.
NPJ Digit Med ; 3: 139, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33134556

RESUMO

Acute kidney injury (AKI) is a major complication after cardiothoracic surgery. Early prediction of AKI could prompt preventive measures, but is challenging in the clinical routine. One important reason is that the amount of postoperative data is too massive and too high-dimensional to be effectively processed by the human operator. We therefore sought to develop a deep-learning-based algorithm that is able to predict postoperative AKI prior to the onset of symptoms and complications. Based on 96 routinely collected parameters we built a recurrent neural network (RNN) for real-time prediction of AKI after cardiothoracic surgery. From the data of 15,564 admissions we constructed a balanced training set (2224 admissions) for the development of the RNN. The model was then evaluated on an independent test set (350 admissions) and yielded an area under curve (AUC) (95% confidence interval) of 0.893 (0.862-0.924). We compared the performance of our model against that of experienced clinicians. The RNN significantly outperformed clinicians (AUC = 0.901 vs. 0.745, p < 0.001) and was overall well calibrated. This was not the case for the physicians, who systematically underestimated the risk (p < 0.001). In conclusion, the RNN was superior to physicians in the prediction of AKI after cardiothoracic surgery. It could potentially be integrated into hospitals' electronic health records for real-time patient monitoring and may help to detect early AKI and hence modify the treatment in perioperative care.

12.
Radiology ; 297(3): 640-649, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32990513

RESUMO

Background Large vessel occlusion (LVO) stroke is one of the most time-sensitive diagnoses in medicine and requires emergent endovascular therapy to reduce morbidity and mortality. Leveraging recent advances in deep learning may facilitate rapid detection and reduce time to treatment. Purpose To develop a convolutional neural network to detect LVOs at multiphase CT angiography. Materials and Methods This multicenter retrospective study evaluated 540 adults with CT angiography examinations for suspected acute ischemic stroke from February 2017 to June 2018. Examinations positive for LVO (n = 270) were confirmed by catheter angiography and LVO-negative examinations (n = 270) were confirmed through review of clinical and radiology reports. Preprocessing of the CT angiography examinations included vasculature segmentation and the creation of maximum intensity projection images to emphasize the contrast agent-enhanced vasculature. Seven experiments were performed by using combinations of the three phases (arterial, phase 1; peak venous, phase 2; and late venous, phase 3) of the CT angiography. Model performance was evaluated on the held-out test set. Metrics included area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. Results The test set included 62 patients (mean age, 69.5 years; 48% women). Single-phase CT angiography achieved an AUC of 0.74 (95% confidence interval [CI]: 0.63, 0.85) with sensitivity of 77% (24 of 31; 95% CI: 59%, 89%) and specificity of 71% (22 of 31; 95% CI: 53%, 84%). Phases 1, 2, and 3 together achieved an AUC of 0.89 (95% CI: 0.81, 0.96), sensitivity of 100% (31 of 31; 95% CI: 99%, 100%), and specificity of 77% (24 of 31; 95% CI: 59%, 89%), a statistically significant improvement relative to single-phase CT angiography (P = .01). Likewise, phases 1 and 3 and phases 2 and 3 also demonstrated improved fit relative to single phase (P = .03). Conclusion This deep learning model was able to detect the presence of large vessel occlusion and its diagnostic performance was enhanced by using delayed phases at multiphase CT angiography examinations. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Ospel and Goyal in this issue.


Assuntos
Isquemia Encefálica/diagnóstico por imagem , Angiografia por Tomografia Computadorizada , Redes Neurais de Computação , Acidente Vascular Cerebral/diagnóstico por imagem , Idoso , Angiografia Cerebral , Meios de Contraste , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Sensibilidade e Especificidade
13.
AMIA Jt Summits Transl Sci Proc ; 2020: 360-366, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477656

RESUMO

Diagnostic errors can pose a serious threat to patient safety, leading to serious harm and even death. Efforts are being made to develop interventions that allow physicians to reassess for errors and improve diagnostic accuracy. Our study presents an exploration of misdiagnosis patterns mined from PubMed abstracts. Article titles containing certain phrases indicating misdiagnosis were selected and frequencies of these misdiagnoses calculated. We present the resulting patterns in the form of a directed graph with frequency-weighted misdiagnosis edges connecting diagnosis vertices. We find that the most commonly misdiagnosed diseases were often misdiagnosed as many different diseases, with each misdiagnosis having a relatively low frequency, rather than as a single disease with greater probability. Additionally, while a misdiagnosis relationship may generally exist, the relationship was often found to be one-sided.

14.
AMIA Annu Symp Proc ; 2020: 412-421, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33936414

RESUMO

Anginal symptoms can connote increased cardiac risk and a need for change in cardiovascular management. In this study, a pre-trained transformer architecture was used to automatically detect and characterize anginal symptoms from within the history of present illness sections of 459 primary care physician notes. Consecutive patients referred for cardiac testing were included. Notes were annotated for positive and negative mentions of chest pain and shortness of breath characterization. The results demonstrate high sensitivity and specificity for the detection of chest pain or discomfort, substernal chest pain, shortness of breath, and dyspnea on exertion. Model performance extracting factors related to provocation and palliation of chest pain were limited by small sample size. Overall, this study shows that pre-trained transformer architectures have promise in automating the extraction of anginal symptoms from clinical texts.


Assuntos
Angina Pectoris/diagnóstico , Dor no Peito/etiologia , Coleta de Dados , Registros Eletrônicos de Saúde , Processamento de Linguagem Natural , Médicos de Atenção Primária , Dor no Peito/diagnóstico , Sistemas Computacionais , Documentação , Humanos , Masculino , Pessoa de Meia-Idade , Atenção Primária à Saúde
16.
Int J Med Inform ; 129: 20-28, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31445256

RESUMO

BACKGROUND AND PURPOSE: Manual annotation and categorization of non-standardized text ("free-text") of drug orders entered into electronic health records is a labor-intensive task. However, standardization is required for drug order analyses and has implications for clinical decision support. Machine learning could help to speed up manual labelling efforts. The objective of this study was to analyze the performance of deep machine learning methods to annotate non-standardized text of drug order entries with their therapeutically active ingredients. MATERIALS AND METHODS: The data consisted of drug orders entered 8/2009-4/2014 into the electronic health records of inpatients at a large tertiary care academic medical center. We manually annotated the most frequent order entry patterns with the active ingredient they contain (e.g. "Prograf"⟵"Tacrolimus"). We heuristically included additional orders by means of character sequence comparisons to augment the training dataset. Finally, we trained and employed character-level recurrent deep neural networks to classify non-standardized text of drug order entries according to their active ingredients. RESULTS: A total of 26,611 distinct order patterns were considered in our study, of which the top 7.6% (2028) had been annotated with one of 558 distinct ingredients, leaving 24,583 unlabeled observations. Character-level recurrent deep neural networks achieved a Mean Reciprocal Rank (MRR) of 98% and outperformed the best representative baseline, a trigram-based Support Vector Machine, by 2 percentage points. CONCLUSION: Character-level recurrent deep neural networks can be used to map the active ingredient to non-standardized text of drug order entries, outperforming other representative techniques. While machine learning might help to facilitate categorization tasks, still a considerable amount of manual labelling and reviewing work is required to train such systems.


Assuntos
Redes Neurais de Computação , Sistemas de Apoio a Decisões Clínicas , Aprendizado Profundo , Registros Eletrônicos de Saúde , Aprendizado de Máquina , Máquina de Vetores de Suporte
17.
Bioinformatics ; 35(3): 407-414, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30020403

RESUMO

Motivation: Technological advancements in high-throughput DNA sequencing have led to an exponential growth of sequencing data being produced and stored as a byproduct of biomedical research. Despite its public availability, a majority of this data remains hard to query for the research community due to a lack of efficient data representation and indexing solutions. One of the available techniques to represent read data is a condensed form as an assembly graph. Such a representation contains all sequence information but does not store contextual information and metadata. Results: We present two new approaches for a compressed representation of a graph coloring: a lossless compression scheme based on a novel application of wavelet tries as well as a highly accurate lossy compression based on a set of Bloom filters. Both strategies retain a coloring even when adding to the underlying graph topology. We present construction and merge procedures for both methods and evaluate their performance on a wide range of different datasets. By dropping the requirement of a fully lossless compression and using the topological information of the underlying graph, we can reduce memory requirements by up to three orders of magnitude. Representing individual colors as independently stored modules, our approaches can be efficiently parallelized and provide strategies for dynamic use. These properties allow for an easy upscaling to the problem sizes common to the biomedical domain. Availability and implementation: We provide prototype implementations in C++, summaries of our experiments as well as links to all datasets publicly at https://github.com/ratschlab/graph_annotation. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Biologia Computacional , Compressão de Dados , Software , Algoritmos , Cor , Genômica , Sequenciamento de Nucleotídeos em Larga Escala
18.
Lancet Respir Med ; 6(12): 905-914, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30274956

RESUMO

BACKGROUND: The large amount of clinical signals in intensive care units can easily overwhelm health-care personnel and can lead to treatment delays, suboptimal care, or clinical errors. The aim of this study was to apply deep machine learning methods to predict severe complications during critical care in real time after cardiothoracic surgery. METHODS: We used deep learning methods (recurrent neural networks) to predict several severe complications (mortality, renal failure with a need for renal replacement therapy, and postoperative bleeding leading to operative revision) in post cardiosurgical care in real time. Adult patients who underwent major open heart surgery from Jan 1, 2000, to Dec 31, 2016, in a German tertiary care centre for cardiovascular diseases formed the main derivation dataset. We measured the accuracy and timeliness of the deep learning model's forecasts and compared predictive quality to that of established standard-of-care clinical reference tools (clinical rule for postoperative bleeding, Simplified Acute Physiology Score II for mortality, and the Kidney Disease: Improving Global Outcomes staging criteria for acute renal failure) using positive predictive value (PPV), negative predictive value, sensitivity, specificity, area under the curve (AUC), and the F1 measure (which computes a harmonic mean of sensitivity and PPV). Results were externally retrospectively validated with 5898 cases from the published MIMIC-III dataset. FINDINGS: Of 47 559 intensive care admissions (corresponding to 42 007 patients), we included 11 492 (corresponding to 9269 patients). The deep learning models yielded accurate predictions with the following PPV and sensitivity scores: PPV 0·90 and sensitivity 0·85 for mortality, 0·87 and 0·94 for renal failure, and 0·84 and 0·74 for bleeding. The predictions significantly outperformed the standard clinical reference tools, improving the absolute complication prediction AUC by 0·29 (95% CI 0·23-0·35) for bleeding, by 0·24 (0·19-0·29) for mortality, and by 0·24 (0·13-0·35) for renal failure (p<0·0001 for all three analyses). The deep learning methods showed accurate predictions immediately after patient admission to the intensive care unit. We also observed an increase in performance in our validation cohort when the machine learning approach was tested against clinical reference tools, with absolute improvements in AUC of 0·09 (95% CI 0·03-0·15; p=0·0026) for bleeding, of 0·18 (0·07-0·29; p=0·0013) for mortality, and of 0·25 (0·18-0·32; p<0·0001) for renal failure. INTERPRETATION: The observed improvements in prediction for all three investigated clinical outcomes have the potential to improve critical care. These findings are noteworthy in that they use routinely collected clinical data exclusively, without the need for any manual processing. The deep machine learning method showed AUC scores that significantly surpass those of clinical reference tools, especially soon after admission. Taken together, these properties are encouraging for prospective deployment in critical care settings to direct the staff's attention towards patients who are most at risk. FUNDING: No specific funding.


Assuntos
Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Aprendizado Profundo , Hemorragia Pós-Operatória/diagnóstico , Insuficiência Renal/diagnóstico , Idoso , Procedimentos Cirúrgicos Cardíacos/mortalidade , Feminino , Humanos , Unidades de Terapia Intensiva/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Avaliação de Resultados em Cuidados de Saúde , Hemorragia Pós-Operatória/epidemiologia , Valor Preditivo dos Testes , Curva ROC , Insuficiência Renal/epidemiologia , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...