Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36166530

RESUMO

Neural language models are widely used; however, their model parameters often need to be adapted to the specific domains and tasks of an application, which is time- and resource-consuming. Thus, adapters have recently been introduced as a lightweight alternative for model adaptation. They consist of a small set of task-specific parameters with a reduced training time and simple parameter composition. The simplicity of adapter training and composition comes along with new challenges, such as maintaining an overview of adapter properties and effectively comparing their produced embedding spaces. To help developers overcome these challenges, we provide a twofold contribution. First, in close collaboration with NLP researchers, we conducted a requirement analysis for an approach supporting adapter evaluation and detected, among others, the need for both intrinsic (i.e., embedding similarity- based) and extrinsic (i.e., prediction-based) explanation methods. Second, motivated by the gathered requirements, we designed a flexible visual analytics workspace that enables the comparison of adapter properties. In this paper, we discuss several design iterations and alternatives for interactive, comparative visual explanation methods. Our comparative visualizations show the differences in the adapted embedding vectors and prediction outcomes for diverse human-interpretable concepts (e.g., person names, human qualities). We evaluate our workspace through case studies and show that, for instance, an adapter trained on the language debiasing task according to context-0 (decontextualized) embeddings introduces a new type of bias where words (even gender-independent words such as countries) become more similar to female- than male pronouns. We demonstrate that these are artifacts of context-0 embeddings, and the adapter effectively eliminates the gender information from the contextualized word representations.

2.
IEEE Comput Graph Appl ; PP2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36094981

RESUMO

Collaborative human-AI problem-solving and decision-making rely on effective communications between both agents. Such communication processes comprise explanations and interactions between a sender and a receiver. Investigating these dynamics is crucial to avoid miscommunication problems. Hence, in this paper, we propose a communication dynamics model, examining the impact of the sender's explanation intention and strategy on the receiver's perception of explanation effects. We further present potential biases and reasoning pitfalls with the aim of contributing to the design of hybrid intelligence systems. Lastly, we propose six desiderata for human-centered explainable AI and discuss future research opportunities.

3.
IEEE Trans Vis Comput Graph ; 28(9): 3307-3323, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33439846

RESUMO

Visual analytics enables the coupling of machine learning models and humans in a tightly integrated workflow, addressing various analysis tasks. Each task poses distinct demands to analysts and decision-makers. In this survey, we focus on one canonical technique for rule-based classification, namely decision tree classifiers. We provide an overview of available visualizations for decision trees with a focus on how visualizations differ with respect to 16 tasks. Further, we investigate the types of visual designs employed, and the quality measures presented. We find that (i) interactive visual analytics systems for classifier development offer a variety of visual designs, (ii) utilization tasks are sparsely covered, (iii) beyond classifier development, node-link diagrams are omnipresent, (iv) even systems designed for machine learning experts rarely feature visual representations of quality measures other than accuracy. In conclusion, we see a potential for integrating algorithmic techniques, mathematical quality measures, and tailored interactive visualizations to enable human experts to utilize their knowledge more effectively.


Assuntos
Algoritmos , Gráficos por Computador , Árvores de Decisões , Humanos , Aprendizado de Máquina
4.
IEEE Comput Graph Appl ; 41(6): 7-12, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34890313

RESUMO

The increasing use of artificial intelligence (AI) technologies across application domains has prompted our society to pay closer attention to AI's trustworthiness, fairness, interpretability, and accountability. In order to foster trust in AI, it is important to consider the potential of interactive visualization, and how such visualizations help build trust in AI systems. This manifesto discusses the relevance of interactive visualizations and makes the following four claims: i) trust is not a technical problem, ii) trust is dynamic, iii) visualization cannot address all aspects of trust, and iv) visualization is crucial for human agency in AI.


Assuntos
Inteligência Artificial , Confiança , Humanos , Responsabilidade Social
5.
Artigo em Inglês | MEDLINE | ID: mdl-34379592

RESUMO

We present VisInReport, a visual analytics tool that supports the manual analysis of discourse transcripts and generates reports based on user interaction. As an integral part of scholarly work in the social sciences and humanities, discourse analysis involves an aggregation of characteristics identified in the text, which, in turn, involves a prior identification of regions of particular interest. Manual data evaluation requires extensive effort, which can be a barrier to effective analysis. Our system addresses this challenge by augmenting the users' analysis with a set of automatically generated visualization layers. These layers enable the detection and exploration of relevant parts of the discussion supporting several tasks, such as topic modeling or question categorization. The system summarizes the extracted events visually and verbally, generating a content-rich insight into the data and the analysis process. During each analysis session, VisInReport builds a shareable report containing a curated selection of interactions and annotations generated by the analyst. We evaluate our approach on real-world datasets through a qualitative study with domain experts from political science, computer science, and linguistics. The results highlight the benefit of integrating the analysis and reporting processes through a visual analytics system, which supports the communication of results among collaborating researchers.

6.
IEEE Trans Vis Comput Graph ; 27(3): 2220-2236, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-31514139

RESUMO

Visualization has been deemed a useful technique by researchers and practitioners, alike, leaving a trail of arguments behind that reason why visualization works. In addition, examples of misleading usages of visualizations in information communication have occasionally been pointed out. Thus, to contribute to the fundamental understanding of our discipline, we require a comprehensive collection of arguments on "why visualize?" (or "why not?"), untangling the rationale behind positive and negative viewpoints. In this paper, we report a theoretical study to understand the underlying reasons of various arguments; their relationships (e.g., built-on, and conflict); and their respective dependencies on tasks, users, and data. We curated an argumentative network based on a collection of arguments from various fields, including information visualization, cognitive science, psychology, statistics, philosophy, and others. Our work proposes several categorizations for the arguments, and makes their relations explicit. We contribute the first comprehensive and systematic theoretical study of the arguments on visualization. Thereby, we provide a roadmap towards building a foundation for visualization theory and empirical research as well as for practical application in the critique and design of visualizations. In addition, we provide our argumentation network and argument collection online at https://whyvis.dbvis.de, supported by an interactive visualization.

7.
IEEE Trans Vis Comput Graph ; 26(1): 1064-1074, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31442998

RESUMO

We propose a framework for interactive and explainable machine learning that enables users to (1) understand machine learning models; (2) diagnose model limitations using different explainable AI methods; as well as (3) refine and optimize the models. Our framework combines an iterative XAI pipeline with eight global monitoring and steering mechanisms, including quality monitoring, provenance tracking, model comparison, and trust building. To operationalize the framework, we present explAIner, a visual analytics system for interactive and explainable machine learning that instantiates all phases of the suggested pipeline within the commonly used TensorBoard environment. We performed a user-study with nine participants across different expertise levels to examine their perception of our workflow and to collect suggestions to fill the gap between our system and framework. The evaluation confirms that our tightly integrated system leads to an informed machine learning process while disclosing opportunities for further extensions.

8.
IEEE Trans Vis Comput Graph ; 26(1): 1001-1011, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31443000

RESUMO

We present a framework that allows users to incorporate the semantics of their domain knowledge for topic model refinement while remaining model-agnostic. Our approach enables users to (1) understand the semantic space of the model, (2) identify regions of potential conflicts and problems, and (3) readjust the semantic relation of concepts based on their understanding, directly influencing the topic modeling. These tasks are supported by an interactive visual analytics workspace that uses word-embedding projections to define concept regions which can then be refined. The user-refined concepts are independent of a particular document collection and can be transferred to related corpora. All user interactions within the concept space directly affect the semantic relations of the underlying vector space model, which, in turn, change the topic modeling. In addition to direct manipulation, our system guides the users' decision-making process through recommended interactions that point out potential improvements. This targeted refinement aims at minimizing the feedback required for an efficient human-in-the-loop process. We confirm the improvements achieved through our approach in two user studies that show topic model quality improvements through our visual knowledge externalization and learning process.

9.
IEEE Trans Vis Comput Graph ; 25(7): 2482-2504, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29993887

RESUMO

Visual text analytics has recently emerged as one of the most prominent topics in both academic research and the commercial world. To provide an overview of the relevant techniques and analysis tasks, as well as the relationships between them, we comprehensively analyzed 263 visualization papers and 4,346 mining papers published between 1992-2017 in two fields: visualization and text mining. From the analysis, we derived around 300 concepts (visualization techniques, mining techniques, and analysis tasks) and built a taxonomy for each type of concept. The co-occurrence relationships between the concepts were also extracted. Our research can be used as a stepping-stone for other researchers to 1) understand a common set of concepts used in this research topic; 2) facilitate the exploration of the relationships between visualization techniques, mining techniques, and analysis tasks; 3) understand the current practice in developing visual text analytics tools; 4) seek potential research opportunities by narrowing the gulf between visualization and mining techniques based on the analysis tasks; and 5) analyze other interdisciplinary research areas in a similar way. We have also contributed a web-based visualization tool for analyzing and understanding research trends and opportunities in visual text analytics.

10.
Artigo em Inglês | MEDLINE | ID: mdl-30235133

RESUMO

To effectively assess the potential consequences of human interventions in model-driven analytics systems, we establish the concept of speculative execution as a visual analytics paradigm for creating user-steerable preview mechanisms. This paper presents an explainable, mixed-initiative topic modeling framework that integrates speculative execution into the algorithmic decisionmaking process. Our approach visualizes the model-space of our novel incremental hierarchical topic modeling algorithm, unveiling its inner-workings. We support the active incorporation of the user's domain knowledge in every step through explicit model manipulation interactions. In addition, users can initialize the model with expected topic seeds, the backbone priors. For a more targeted optimization, the modeling process automatically triggers a speculative execution of various optimization strategies, and requests feedback whenever the measured model quality deteriorates. Users compare the proposed optimizations to the current model state and preview their effect on the next model iterations, before applying one of them. This supervised human-in-the-loop process targets maximum improvement for minimum feedback and has proven to be effective in three independent studies that confirm topic model quality improvements.

11.
IEEE Comput Graph Appl ; 38(6): 26-38, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30668453

RESUMO

For the past two years, researchers from the visualization community and the digital humanities have come together at the IEEE VIS conference to discuss how both disciplines can work together to push research goals in their respective disciplines. In this paper, we present our experiences as a result of this collaboration.

12.
IEEE Trans Vis Comput Graph ; 24(1): 382-391, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28866566

RESUMO

Topic modeling algorithms are widely used to analyze the thematic composition of text corpora but remain difficult to interpret and adjust. Addressing these limitations, we present a modular visual analytics framework, tackling the understandability and adaptability of topic models through a user-driven reinforcement learning process which does not require a deep understanding of the underlying topic modeling algorithms. Given a document corpus, our approach initializes two algorithm configurations based on a parameter space analysis that enhances document separability. We abstract the model complexity in an interactive visual workspace for exploring the automatic matching results of two models, investigating topic summaries, analyzing parameter distributions, and reviewing documents. The main contribution of our work is an iterative decision-making technique in which users provide a document-based relevance feedback that allows the framework to converge to a user-endorsed topic distribution. We also report feedback from a two-stage study which shows that our technique results in topic model quality improvements on two independent measures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...