RESUMO
The advent of low-cost, accessible, and high-performance augmented reality (AR) has shed light on a situated form of analytics where in-situ visualizations embedded in the real world can facilitate sensemaking based on the user's physical location. In this work, we identify prior literature in this emerging field with a focus on the technologies enabling such situated analytics. After collecting 47 relevant situated analytics systems, we classify them using a taxonomy of three dimensions: situating triggers, view situatedness, and data depiction. We then identify four archetypical patterns in our classification using an ensemble cluster analysis. Finally, we discuss several insights and design guidelines that we learned from our analysis.
RESUMO
As online news increasingly include data journalism, there is a corresponding increase in the incorporation of visualization in article thumbnail images. However, little research exists on the design rationale for visualization thumbnails, such as resizing, cropping, simplifying, and embellishing charts that appear within the body of the associated article. Therefore, in this paper we aim to understand these design choices and determine what makes a visualization thumbnail inviting and interpretable. To this end, we first survey visualization thumbnails collected online and discuss visualization thumbnail practices with data journalists and news graphics designers. Based on the survey and discussion results, we then define a design space for visualization thumbnails and conduct a user study with four types of visualization thumbnails derived from the design space. The study results indicate that different chart components play different roles in attracting reader attention and enhancing reader understandability of the visualization thumbnails. We also find various thumbnail design strategies for effectively combining the charts' components, such as a data summary with highlights and data labels, and a visual legend with text labels and Human Recognizable Objects (HROs), into thumbnails. Ultimately, we distill our findings into design implications that allow effective visualization thumbnail designs for data-rich news articles. Our work can thus be seen as a first step toward providing structured guidance on how to design compelling thumbnails for data stories.
RESUMO
The emerging practice of data-driven storytelling is framing data using familiar narrative mechanisms, such as slideshows, videos, and comics, to make even highly complex phenomena understandable. In this survey, we propose a taxonomy focused specifically on media types for the purpose of widening the purview of data-driven storytelling by putting more tools into the hands of designers. The classification shows that current data-driven storytelling practice does not yet leverage the full repertoire of media that can be used for storytelling, such as the spoken word, e-learning, and video games. Using our taxonomy as a generative tool, we also explore three novel storytelling mechanisms, including for live streaming, gesture-driven oral presentations, and data-driven comics.
RESUMO
Analyzing user behavior from usability evaluation can be a challenging and time-consuming task, especially as the number of participants and the scale and complexity of the evaluation grows. We propose UXSENSE, a visual analytics system using machine learning methods to extract user behavior from audio and video recordings as parallel time-stamped data streams. Our implementation draws on pattern recognition, computer vision, natural language processing, and machine learning to extract user sentiment, actions, posture, spoken words, and other features from such recordings. These streams are visualized as parallel timelines in a web-based front-end, enabling the researcher to search, filter, and annotate data across time and space. We present the results of a user study involving professional UX researchers evaluating user data using uxSense. In fact, we used uxSense itself to evaluate their sessions.
RESUMO
Idealized probability distributions, such as normal or other curves, lie at the root of confirmatory statistical tests. But how well do people understand these idealized curves? In practical terms, does the human visual system allow us to match sample data distributions with hypothesized population distributions from which those samples might have been drawn? And how do different visualization techniques impact this capability? This paper shares the results of a crowdsourced experiment that tested the ability of respondents to fit normal curves to four different data distribution visualizations: bar histograms, dotplot histograms, strip plots, and boxplots. We find that the crowd can estimate the center (mean) of a distribution with some success and little bias. We also find that people generally overestimate the standard deviation-which we dub the "umbrella effect" because people tend to want to cover the whole distribution using the curve, as if sheltering it from the heavens above-and that strip plots yield the best accuracy.
RESUMO
Visual perception is a key component of data visualization. Much prior empirical work uses eye movement as a proxy to understand human visual perception. Diverse apparatus and techniques have been proposed to collect eye movements, but there is still no optimal approach. In this paper, we review 30 prior works for collecting eye movements based on three axes: (1) the tracker technology used to measure eye movements; (2) the image stimulus shown to participants; and (3) the collection methodology used to gather the data. Based on this taxonomy, we employ a webcam-based eyetracking approach using task-specific visualizations as the stimulus. The low technology requirement means that virtually anyone can participate, thus enabling us to collect data at large scale using crowdsourcing: approximately 12,000 samples in total. Choosing visualization images as stimulus means that the eye movements will be specific to perceptual tasks associated with visualization. We use these data to propose a SCANNER DEEPLY, a virtual eyetracker model that, given an image of a visualization, generates a gaze heatmap for that image. We employ a computationally efficient, yet powerful convolutional neural network for our model. We compare the results of our work with results from the DVS model and a neural network trained on the Salicon dataset. The analysis of our gaze patterns enables us to understand how users grasp the structure of visualized data. We also make our stimulus dataset of visualization images available as part of this paper's contribution.
RESUMO
We present an approach for interactively visualizing data using color-changing inks without the need for electronic displays or computers. Color-changing inks are a family of physical inks that change their color characteristics in response to an external stimulus such as heat, UV light, water, and pressure. Visualizations created using color-changing inks can embed interactivity in printed material without external computational media. In this paper, we survey current color-changing ink technology and then use these findings to derive a framework for how it can be used to construct interactive data representations. We also enumerate the interaction techniques possible using this technology. We then show some examples of how to use color-changing ink to create interactive visualizations on paper. While obviously limited in scope to situations where no power or computing is present, or as a complement to digital displays, our findings can be employed for paper, data physicalization, and embedded visualizations.
RESUMO
We present Roslingifier, a data-driven storytelling method for animated scatterplots. Like its namesake, Hans Rosling (1948--2017), a professor of public health and a spellbinding public speaker, Roslingifier turns a sequence of entities changing over time---such as countries and continents with their demographic data---into an engaging narrative telling the story of the data. This data-driven storytelling method with an in-person presenter is a new genre of storytelling technique and has never been studied before. In this paper, we aim to define a design space for this new genre---data presentation---and provide a semi-automated authoring tool for helping presenters create quality presentations. From an in-depth analysis of video clips of presentations using interactive visualizations, we derive three specific techniques to achieve this: natural language narratives, visual effects that highlight events, and temporal branching that changes playback time of the animation. Our implementation of the Roslingifier method is capable of identifying and clustering significant movements, automatically generating visual highlighting and a narrative for playback, and enabling the user to customize. From two user studies, we show that Roslingifier allows users to effectively create engaging data stories and the system features help both presenters and viewers find diverse insights.
RESUMO
For all its potential in supporting data analysis, particularly in exploratory situations, visualization also creates barriers: accessibility for blind and visually impaired individuals. Regardless of how effective a visualization is, providing equal access for blind users requires a paradigm shift for the visualization research community. To enact such a shift, it is not sufficient to treat visualization accessibility as merely another technical problem to overcome. Instead, supporting the millions of blind and visually impaired users around the world who have equally valid needs for data analysis as sighted individuals requires a respectful, equitable, and holistic approach that includes all users from the onset. In this paper, we draw on accessibility research methodologies to make inroads towards such an approach. We first identify the people who have specific insight into how blind people perceive the world: orientation and mobility (O&M) experts, who are instructors that teach blind individuals how to navigate the physical world using non-visual senses. We interview 10 O&M experts-all of them blind-to understand how best to use sensory substitution other than the visual sense for conveying spatial layouts. Finally, we investigate our qualitative findings using thematic analysis. While blind people in general tend to use both sound and touch to understand their surroundings, we focused on auditory affordances and how they can be used to make data visualizations accessible-using sonification and auralization. However, our experts recommended supporting a combination of senses-sound and touch-to make charts accessible as blind individuals may be more familiar with exploring tactile charts. We report results on both sound and touch affordances, and conclude by discussing implications for accessible visualization for blind individuals.
Assuntos
Gráficos por Computador , Pessoas com Deficiência Visual , Cegueira , Humanos , Tato , Visão OcularRESUMO
Causality visualization can help people understand temporal chains of events, such as messages sent in a distributed system, cause and effect in a historical conflict, or the interplay between political actors over time. However, as the scale and complexity of these event sequences grows, even these visualizations can become overwhelming to use. In this paper, we propose the use of textual narratives as a data-driven storytelling method to augment causality visualization. We first propose a design space for how textual narratives can be used to describe causal data. We then present results from a crowdsourced user study where participants were asked to recover causality information from two causality visualizations-causal graphs and Hasse diagrams-with and without an associated textual narrative. Finally, we describe Causeworks, a causality visualization system for understanding how specific interventions influence a causal model. The system incorporates an automatic textual narrative mechanism based on our design space. We validate Causeworks through interviews with experts who used the system for understanding complex events.
RESUMO
Data visualizations convert numbers into visual marks so that our visual system can extract data from an image instead of raw numbers. Clearly, the visual system does not compute these values as a computer would, as an arithmetic mean or a correlation. Instead, it extracts these patterns using perceptual proxies; heuristic shortcuts of the visual marks, such as a center of mass or a shape envelope. Understanding which proxies people use would lead to more effective visualizations. We present the results of a series of crowdsourced experiments that measure how powerfully a set of candidate proxies can explain human performance when comparing the mean and range of pairs of data series presented as bar charts. We generated datasets where the correct answer-the series with the larger arithmetic mean or range-was pitted against an "adversarial" series that should be seen as larger if the viewer uses a particular candidate proxy. We used both Bayesian logistic regression models and a robust Bayesian mixed-effects linear model to measure how strongly each adversarial proxy could drive viewers to answer incorrectly and whether different individuals may use different proxies. Finally, we attempt to construct adversarial datasets from scratch, using an iterative crowdsourcing procedure to perform black-box optimization.
RESUMO
MOTIVATION: Integrative analysis of genomic data that includes statistical methods in combination with visual exploration has gained widespread adoption. Many existing methods involve a combination of tools and resources: user interfaces that provide visualization of large genomic datasets, and computational environments that focus on data analyses over various subsets of a given dataset. Over the last few years, we have developed Epiviz as an integrative and interactive genomic data analysis tool that incorporates visualization tightly with state-of-the-art statistical analysis framework. RESULTS: In this article, we present Epiviz Feed, a proactive and automatic visual analytics system integrated with Epiviz that alleviates the burden of manually executing data analysis required to test biologically meaningful hypotheses. Results of interest that are proactively identified by server-side computations are listed as notifications in a feed. The feed turns genomic data analysis into a collaborative work between the analyst and the computational environment, which shortens the analysis time and allows the analyst to explore results efficiently.We discuss three ways where the proposed system advances the field of genomic data analysis: (i) takes the first step of proactive data analysis by utilizing available CPU power from the server to automate the analysis process; (ii) summarizes hypothesis test results in a way that analysts can easily understand and investigate; (iii) enables filtering and grouping of analysis results for quick search. This effort provides initial work on systems that substantially expand how computational and visualization frameworks can be tightly integrated to facilitate interactive genomic data analysis. AVAILABILITY AND IMPLEMENTATION: The source code for Epiviz Feed application is available at http://github.com/epiviz/epiviz_feed_polymer. The Epiviz Computational Server is available at http://github.com/epiviz/epiviz-feed-computation. Please refer to Epiviz documentation site for details: http://epiviz.github.io/.
Assuntos
Genômica , Software , Genoma , Projetos de PesquisaRESUMO
The Law of Common Fate from Gestalt psychology states that visual objects moving with the same velocity along parallel trajectories will be perceived by a human observer as grouped. However, the concept of common fate is much broader than mere velocity; in this paper we explore how common fate results from coordinated changes in luminance and size. We present results from a crowdsourced graphical perception study where we asked workers to make perceptual judgments on a series of trials involving four graphical objects under the influence of conflicting static and dynamic visual factors (position, size and luminance) used in conjunction. Our results yield the following rankings for visual grouping: motion > (dynamic luminance, size, luminance); dynamic size > (dynamic luminance, position); and dynamic luminance > size. We also conducted a follow-up experiment to evaluate the three dynamic visual factors in a more ecologically valid setting, using both a Gapminder-like animated scatterplot and a thematic map of election data. The results indicate that in practice the relative grouping strengths of these factors may depend on various parameters including the visualization characteristics and the underlying data. We discuss design implications for animated transitions in data visualization.
RESUMO
Perceptual tasks in visualizations often involve comparisons. Of two sets of values depicted in two charts, which set had values that were the highest overall? Which had the widest range? Prior empirical work found that the performance on different visual comparison tasks (e.g., "biggest delta", "biggest correlation") varied widely across different combinations of marks and spatial arrangements. In this paper, we expand upon these combinations in an empirical evaluation of two new comparison tasks: the "biggest mean" and "biggest range" between two sets of values. We used a staircase procedure to titrate the difficulty of the data comparison to assess which arrangements produced the most precise comparisons for each task. We find visual comparisons of biggest mean and biggest range are supported by some chart arrangements more than others, and that this pattern is substantially different from the pattern for other tasks. To synthesize these dissonant findings, we argue that we must understand which features of a visualization are actually used by the human visual system to solve a given task. We call these perceptual proxies. For example, when comparing the means of two bar charts, the visual system might use a "Mean length" proxy that isolates the actual lengths of the bars and then constructs a true average across these lengths. Alternatively, it might use a "Hull Area" proxy that perceives an implied hull bounded by the bars of each chart and then compares the areas of these hulls. We propose a series of potential proxies across different tasks, marks, and spatial arrangements. Simple models of these proxies can be empirically evaluated for their explanatory power by matching their performance to human performance across these marks, arrangements, and tasks. We use this process to highlight candidates for perceptual proxies that might scale more broadly to explain performance in visual comparison.
Assuntos
Gráficos por Computador , Percepção Visual/fisiologia , Crowdsourcing , Humanos , Modelos Biológicos , Análise e Desempenho de TarefasRESUMO
Immersive analytics turns the very space surrounding the user into a canvas for data analysis, supporting human cognitive abilities in myriad ways. We present the results of a design study, contextual inquiry, and longitudinal evaluation involving professional economists using a Virtual Reality (VR) system for multidimensional visualization to explore actual economic data. Results from our preregistered evaluation highlight the varied use of space depending on context (exploration vs. presentation), the organization of space to support work, and the impact of immersion on navigation and orientation in the 3D analysis space.
RESUMO
Data are often viewed as a single set of values, but those values frequently must be compared with another set. The existing evaluations of designs that facilitate these comparisons tend to be based on intuitive reasoning, rather than quantifiable measures. We build on this work with a series of crowdsourced experiments that use low-level perceptual comparison tasks that arise frequently in comparisons within data visualizations (e.g., which value changes the most between the two sets of data?). Participants completed these tasks across a variety of layouts: overlaid, two arrangements of juxtaposed small multiples, mirror-symmetric small multiples, and animated transitions. A staircase procedure sought the difficulty level (e.g., value change delta) that led to equivalent accuracy for each layout. Confirming prior intuition, we observe high levels of performance for overlaid versus standard small multiples. However, we also find performance improvements for both mirror symmetric small multiples and animated transitions. While some results are incongruent with common wisdom in data visualization, they align with previous work in perceptual psychology, and thus have potentially strong implications for visual comparison designs.
RESUMO
Today's data-rich documents are often complex datasets in themselves, consisting of information in different formats such as text, figures, and data tables. These additional media augment the textual narrative in the document. However, the static layout of a traditional for-print document often impedes deep understanding of its content because of the need to navigate to access content scattered throughout the text. In this paper, we seek to facilitate enhanced comprehension of such documents through a contextual visualization technique that couples text content with data tables contained in the document. We parse the text content and data tables, cross-link the components using a keyword-based matching algorithm, and generate on-demand visualizations based on the reader's current focus within a document. We evaluate this technique in a user study comparing our approach to a traditional reading experience. Results from our study show that (1) participants comprehend the content better with tighter coupling of text and data, (2) the contextual visualizations enable participants to develop better summaries that capture the main data-rich insights within the document, and (3) overall, our method enables participants to develop a more detailed understanding of the document content.
RESUMO
Visualization tools are often specialized for specific tasks, which turns the user's analytical workflow into a fragmented process performed across many tools. In this paper, we present a component model design for data visualization to promote modular designs of visualization tools that enhance their analytical scope. Rather than fragmenting tasks across tools, the component model supports unification, where components-the building blocks of this model-can be assembled to support a wide range of tasks. Furthermore, the model also provides additional key properties, such as support for collaboration, sharing across multiple devices, and adaptive usage depending on expertise, from creating visualizations using dropdown menus, through instantiating components, to actually modifying components or creating entirely new ones from scratch using JavaScript or Python source code. To realize our model, we introduce VISTRATES, a literate computing platform for developing, assembling, and sharing visualization components. From a visualization perspective, Vistrates features cross-cutting components for visual representations, interaction, collaboration, and device responsiveness maintained in a component repository. From a development perspective, Vistrates offers a collaborative programming environment where novices and experts alike can compose component pipelines for specific analytical activities. Finally, we present several Vistrates use cases that span the full range of the classic "anytime" and "anywhere" motto for ubiquitous analysis: from mobile and on-the-go usage, through office settings, to collaborative smart environments covering a variety of tasks and devices.
RESUMO
Olfactory feedback for analytical tasks is a virtually unexplored area in spite of the advantages it offers for information recall, feature identification, and location detection. Here we introduce the concept of information olfactation as the fragrant sibling of information visualization, and discuss how scent can be used to convey data. Building on a review of the human olfactory system and mirroring common visualization practice, we propose olfactory marks, the substrate in which they exist, and their olfactory channels that are available to designers. To exemplify this idea, we present VISCENT: A six-scent stereo olfactory display capable of conveying olfactory glyphs of varying temperature and direction, as well as a corresponding software system that integrates the display with a traditional visualization display. Finally, we present three applications that make use of the viScent system: A 2D graph visualization, a 2D line and point chart, and an immersive analytics graph visualization in 3D virtual reality. We close the paper with a review of possible extensions of viScent and applications of information olfactation for general visualization beyond the examples in this paper.
RESUMO
Unit visualizations are a family of visualizations where every data item is represented by a unique visual mark-a visual unit-during visual encoding. For certain datasets and tasks, unit visualizations can provide more information, better match the user's mental model, and enable novel interactions compared to traditional aggregated visualizations. Current visualization grammars cannot fully describe the unit visualization family. In this paper, we characterize the design space of unit visualizations to derive a grammar that can express them. The resulting grammar is called ATOM, and is based on passing data through a series of layout operations that divide the output of previous operations recursively until the size and position of every data point can be determined. We evaluate the expressive power of the grammar by both using it to describe existing unit visualizations, as well as to suggest new unit visualizations.