Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Mais filtros

Base de dados
Intervalo de ano de publicação
J Med Chem ; 64(1): 677-694, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33370104


A search for structurally diversified Tyk2 JH2 ligands from 6 (BMS-986165), a pyridazine carboxamide-derived Tyk2 JH2 ligand as a clinical Tyk2 inhibitor currently in late development for the treatment of psoriasis, began with a survey of six-membered heteroaryl groups in place of the N-methyl triazolyl moiety in 6. The X-ray co-crystal structure of an early lead (12) revealed a potential new binding pocket. Exploration of the new pocket resulted in two frontrunners for a clinical candidate. The potential hydrogen bonding interaction with Thr599 in the pocket was achieved with a tertiary amide moiety, confirmed by the X-ray co-crystal structure of 29. When the diversity search was extended to nicotinamides, a single fluorine atom addition was found to significantly enhance the permeability, which directly led to the discovery of 7 (BMS-986202) as a clinical Tyk2 inhibitor that binds to Tyk2 JH2. The preclinical studies of 7, including efficacy studies in mouse models of IL-23-driven acanthosis, anti-CD40-induced colitis, and spontaneous lupus, will also be presented.

Ciclopropanos/farmacologia , Descoberta de Drogas , Oxazóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , TYK2 Quinase/antagonistas & inibidores , Animais , Catálise , Cristalografia por Raios X , Ciclopropanos/química , Humanos , Camundongos , Oxazóis/química , Ligação Proteica , Inibidores de Proteínas Quinases/química , Psoríase/tratamento farmacológico , Relação Estrutura-Atividade , TYK2 Quinase/metabolismo
J Med Chem ; 62(7): 3228-3250, 2019 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-30893553


Bruton's tyrosine kinase (BTK), a non-receptor tyrosine kinase, is a member of the Tec family of kinases and is essential for B cell receptor (BCR) mediated signaling. BTK also plays a critical role in the downstream signaling pathways for the Fcγ receptor in monocytes, the Fcε receptor in granulocytes, and the RANK receptor in osteoclasts. As a result, pharmacological inhibition of BTK is anticipated to provide an effective strategy for the clinical treatment of autoimmune diseases such as rheumatoid arthritis and lupus. This article will outline the evolution of our strategy to identify a covalent, irreversible inhibitor of BTK that has the intrinsic potency, selectivity, and pharmacokinetic properties necessary to provide a rapid rate of inactivation systemically following a very low dose. With excellent in vivo efficacy and a very desirable tolerability profile, 5a (branebrutinib, BMS-986195) has advanced into clinical studies.

Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Descoberta de Drogas , Indóis/farmacologia , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Animais , Artrite Reumatoide/tratamento farmacológico , Relação Dose-Resposta a Droga , Humanos , Indóis/farmacocinética , Indóis/uso terapêutico , Concentração Inibidora 50 , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Macaca fascicularis , Camundongos , Piperidinas/farmacocinética , Piperidinas/uso terapêutico , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/uso terapêutico
ACS Med Chem Lett ; 7(1): 40-5, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26819663


Efforts to identify a potent, reversible, nonsteroidal CYP17A1 lyase inhibitor with good selectivity over CYP17A1 hydroxylase and CYPs 11B1 and 21A2 for the treatment of castration-resistant prostate cancer (CRPC) culminated in the discovery of BMS-351 (compound 18), a pyridyl biaryl benzimidazole with an excellent in vivo profile. Biological evaluation of BMS-351 at a dose of 1.5 mg in castrated cynomolgus monkeys revealed a remarkable reduction in testosterone levels with minimal glucocorticoid and mineralcorticoid perturbation. Based on a favorable profile, BMS-351 was selected as a candidate for further preclinical evaluation.

J Pharm Sci ; 97(4): 1427-42, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17724660


A rapid solubility-screening assay was developed with a focus on Biopharmaceutic Classification Scheme (BCS) class II drug solubility in animal and simulated human gastrointestinal (GI) fluids. The assay enables biologically promising drug leads to be evaluated for solubility limitations earlier in the drug development process, minimizes GI fluid needs, and produces in vitro solubility information with potential in vivo implications. A number of BCS II drugs were dissolved in DMSO at approximately 40 mM, and robotically distributed to a 96-well plate. The DMSO was evaporated and drugs were equilibrated with selected GI fluids, both fed and fasted states. After equilibration, precipitated wells were subjected to HPLC analysis. A spreadsheet calculated solubility automatically from HPLC output. Intra-day, inter-day, and inter-plate reproducibility were within 15% RSTD for the tested drugs with the primary source of variability being injection precision of our injector system. The reported solubility from screening assays was well correlated with literature data (r(2) = 0.80) with a slope of 0.86 and (r(2) = 0.99) with a slope of 0.89. This screening assay converts conventional solubility measurements to a 96-well format for increased throughput (>12 samples/h), reduces fluid needs, and minimizes drug consumption.

Biofarmácia/métodos , Preparações Farmacêuticas/classificação , Solubilidade , Animais , Líquidos Corporais/metabolismo , Filtração , Trato Gastrointestinal/metabolismo , Humanos , Reprodutibilidade dos Testes
J Pharm Sci ; 97(6): 2080-90, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17879292


A rapid-throughput screening assay was developed to estimate the salt solubility parameter, K(SP), with a minimal quantity of drug. This assay allows for early evaluation of salt limited solubility with a large number of counter-ions and biologically promising drug leads. Drugs dissolved (typically 10 mM) in DMSO are robotically distributed to a 96-well plate. DMSO is evaporated, and drugs are equilibrated with various acids at different concentrations (typically <1 M) to yield final total drug concentrations around 2.5 mM. The plate is checked for precipitation. Filtrates from only those precipitated wells were subjected to rapid gradient HPLC analysis. An iterative procedure is employed to calculate all species concentrations based on mass and charge balance equations. The apparent K(SP) values assuming 1:1 stoichiometry are determined from counter-ion and ionized drug activities. A correlation coefficient >0.975 for eight drugs totaling 16 salts is reported. Intra-day and inter-day reproducibility was <10%. Conventional apparent K(SP) measurements were translated to 96-well format for increased throughput and minimal drug consumption (typically 10 mg) to evaluate at least eight different counter-ions. Although the current protocol estimates K(SP) from 10(-3) to 10(-7) M, the dynamic range of the assay could be expanded by adjusting drug and counter-ion concentrations.

Microquímica , Preparações Farmacêuticas/química , Tecnologia Farmacêutica/métodos , Precipitação Química , Cromatografia Líquida de Alta Pressão , Dimetil Sulfóxido/química , Concentração de Íons de Hidrogênio , Modelos Químicos , Nefelometria e Turbidimetria , Reprodutibilidade dos Testes , Robótica , Solubilidade , Solventes/química