Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Mais filtros

Base de dados
Intervalo de ano de publicação
J Phys Chem A ; 120(36): 7183-91, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27525492


meso-Erythritol is a sugar alcohol identified in atmospheric aerosol particles. In this work, evaporation of submicron-sized particles of meso-erythritol was studied in a TDMA system including a laminar flow tube under dry conditions at five temperatures (278-308 K) and ambient pressure. A complex behavior was observed and attributed to the formation of particles of three different phase states: (1) crystalline, (2) subcooled liquid or amorphous, and (3) mixed. With respect to saturation vapor pressure, the subcooled liquid and amorphous states are treated to be the same. The particle phase state was linked to initial particle size and flow tube temperature. Saturation vapor pressures of two phase states attributed to the crystalline and subcooled liquid state respectively are reported. Our results suggest a mass accommodation coefficient close to one for both states.

Eritritol/química , Aerossóis/química , Pressão de Vapor
Environ Sci Technol ; 48(11): 6168-76, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24810838


Formation and evolution of secondary organic aerosols (SOA) from biogenic VOCs influences the Earth's radiative balance. We have examined the photo-oxidation and aging of boreal terpene mixtures in the SAPHIR simulation chamber. Changes in thermal properties and chemical composition, deduced from mass spectrometric measurements, were providing information on the aging of biogenic SOA produced under ambient solar conditions. Effects of precursor mixture, concentration, and photochemical oxidation levels (OH exposure) were evaluated. OH exposure was found to be the major driver in the long term photochemical transformations, i.e., reaction times of several hours up to days, of SOA and its thermal properties, whereas the initial concentrations and terpenoid mixtures had only minor influence. The volatility distributions were parametrized using a sigmoidal function to determine TVFR0.5 (the temperature yielding a 50% particle volume fraction remaining) and the steepness of the volatility distribution. TVFR0.5 increased by 0.3±0.1% (ca. 1 K), while the steepness increased by 0.9±0.3% per hour of 1×10(6) cm(-3) OH exposure. Thus, aging reduces volatility and increases homogeneity of the vapor pressure distribution, presumably because highly volatile fractions become increasingly susceptible to gas phase oxidation, while less volatile fractions are less reactive with gas phase OH.

Poluentes Atmosféricos/química , Terpenos/química , Aerossóis/análise , Aerossóis/química , Poluentes Atmosféricos/análise , Gases/química , Oxirredução , Processos Fotoquímicos , Terpenos/análise , Volatilização
J Phys Chem A ; 117(40): 10346-58, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-24001129


The influence of water and radicals on SOAs produced by ß-pinene ozonolysis was investigated at 298 and 288 K using a laminar flow reactor. A volatility tandem differential mobility analyzer (VTDMA) was used to measure the evaporation of the SOA, enabling the parametrization of its volatility properties. The parameters extracted included the temperature at which 50% of the aerosol had evaporated (T(VFR0.5)) and the slope factor (S(VFR)). An increase in S(VFR) indicates a broader distribution of vapor pressures for the aerosol constituents. Reducing the reaction temperature increased S(VFR) and decreased T(VFR0.5) under humid conditions but had less effect on T(VFR0.5) under dry conditions. In general, higher water concentrations gave lower T(VFR0.5) values, more negative S(VFR) values, and a reduction in total SOA production. The radical conditions were changed by introducing OH scavengers to generate systems with and without OH radicals and with different [HO2]/[RO2] ratios. The presence of a scavenger and lower [HO2]/[RO2] ratio reduced SOA production. Observed changes in S(VFR) values could be linked to the more complex chemistry that occurs in the absence of a scavenger and indicated that additional HO2 chemistry gives products with a wider range of vapor pressures. Updates to existing ozonolysis mechanisms with routes that describe the observed responses to water and radical conditions for monoterpenes with endocyclic and exocyclic double bonds are discussed.

Poluentes Atmosféricos/química , Compostos Bicíclicos com Pontes/química , Monoterpenos/química , Ozônio/química , Água/química , Aerossóis , Monoterpenos Bicíclicos , Depuradores de Radicais Livres/química , Umidade , Radical Hidroxila/antagonistas & inibidores , Radical Hidroxila/química , Temperatura , Volatilização
Environ Sci Technol ; 46(21): 11660-9, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-22985264


Limonene has a strong tendency to form secondary organic aerosol (SOA) in the atmosphere and in indoor environments. Initial oxidation occurs mainly via ozone or OH radical chemistry. We studied the effect of O(3) concentrations with or without a OH radical scavenger (2-butanol) on the SOA mass and thermal characteristics using the Gothenburg Flow Reactor for Oxidation Studies at Low Temperatures and a volatility tandem differential mobility analyzer. The SOA mass using 15 ppb limonene was strongly dependent on O(3) concentrations and the presence of a scavenger. The SOA volatility in the presence of a scavenger decreased with increasing levels of O(3), whereas without a scavenger, there was no significant change. A chemical kinetic model was developed to simulate the observations using vapor pressure estimates for compounds that potentially contributed to SOA. The model showed that the product distribution was affected by changes in both OH and ozone concentrations, which partly explained the observed changes in volatility, but was strongly dependent on accurate vapor pressure estimation methods. The model-experiment comparison indicated a need to consider organic peroxides as important SOA constituents. The experimental findings could be explained by secondary condensed-phase ozone chemistry, which competes with OH radicals for the oxidation of primary unsaturated products.

Butanóis/química , Cicloexenos/química , Radical Hidroxila/química , Oxidantes/química , Ozônio/química , Terpenos/química , Aerossóis , Simulação por Computador , Limoneno , Modelos Químicos , Temperatura , Volatilização , Água/química