Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 7(29)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34261651

RESUMO

Subsurface habitats on Earth host an extensive extant biosphere and likely provided one of Earth's earliest microbial habitats. Although the site of life's emergence continues to be debated, evidence of early life provides insights into its early evolution and metabolic affinity. Here, we present the discovery of exceptionally well-preserved, ~3.42-billion-year-old putative filamentous microfossils that inhabited a paleo-subseafloor hydrothermal vein system of the Barberton greenstone belt in South Africa. The filaments colonized the walls of conduits created by low-temperature hydrothermal fluid. Combined with their morphological and chemical characteristics as investigated over a range of scales, they can be considered the oldest methanogens and/or methanotrophs that thrived in an ultramafic volcanic substrate.

2.
Nanomaterials (Basel) ; 10(5)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32365791

RESUMO

The discovery of iron-based superconductors paved the way for advanced possible applications, mostly in high magnetic fields, but also in electronics. Among superconductive devices, nanowire detectors have raised a large interest in recent years, due to their ability to detect a single photon in the visible and infrared (IR) spectral region. Although not yet optimal for single-photon detection, iron-based superconducting nanowire detectors would bring clear advantages due to their high operating temperature, also possibly profiting of other peculiar material properties. However, there are several challenges yet to be overcome, regarding mainly: fabrication of ultra-thin films, appropriate passivation techniques, optimization of nano-patterning, and high-quality electrical contacts. Test nanowire structures, made by ultra-thin films of Co-doped BaFe2As2, have been fabricated and characterized in their transport and intrinsic noise properties. The results on the realized nanostructures show good properties in terms of material resistivity and critical current. Details on the fabrication and low temperature characterization of the realized nanodevices are presented, together with a study of possible degradation phenomena induced by ageing effects.

3.
Sci Rep ; 7(1): 13492, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-29044174

RESUMO

Phase-tunable hybrid devices, built upon nanostructures combining normal metal and superconductors, have been the subject of intense studies due to their numerous combinations of different charge and heat transport configurations. They exhibit solid applications in quantum metrology and coherent caloritronics. Here we propose and realize a new kind of hybrid device with potential application in single charge manipulation and quantized current generation. We show that by tuning superconductivity on two proximized nanowires, coupled via a Coulombic normal-metal island, we are able to control its charge state configuration. This device supports a one-control-parameter cycle being actuated by the sole magnetic flux. In a voltage biased regime, the phase-tunable superconducting gaps can act as energy barriers for charge quanta leading to an additional degree of freedom in single electronics. The resulting configuration is fully electrostatic and the current across the device is governed by the quasiparticle populations in the source and drain leads. Notably, the proposed device can be realized using standard nanotechniques opening the possibility to a straightforward coupling with the nowadays well developed superconducting electronics.

4.
Sci Rep ; 7(1): 4115, 2017 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-28646157

RESUMO

We study the current-voltage characteristics of Fe(Se,Te) thin films deposited on CaF2 substrates in form of nanostrips (width w ~ λ, λ the London penetration length). In view of a possible application of these materials to superconductive electronics and micro-electronics we focus on transport properties in small magnetic field, the one generated by the bias current. From the characteristics taken at different temperatures we derive estimates for the pinning potential U and the pinning potential range δ for the magnetic flux lines (vortices). Since the sample lines are very narrow, the classical creep flow model provides a sufficiently accurate interpretation of the data only when the attractive interaction between magnetic flux lines of opposite sign is taken into account. The observed voltages and the induced depression of the critical current of the nanostrips are compatible with the presence of a low number ([Formula: see text]) magnetic field lines at the equilibrium, a strongly inhomogeneous current density distribution at the two ends of the strips and a reduced Bean Livingston barrier. In particular, we argue that the sharp corners defining the bridge geometry represent points of easy magnetic flux lines injection. The results are relevant for creep flow analysis in superconducting Fe(Se,Te) nanostrips.

5.
ACS Appl Mater Interfaces ; 9(18): 15685-15697, 2017 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-28397488

RESUMO

The self-assembly (SA) of diblock copolymers (DBCs) based on phase separation into different morphologies of small and high-density features is widely investigated as a patterning and nanofabrication technique. The integration of conventional top-down approaches with the bottom-up SA of DBCs enables the possibility to address the gap in nanostructured lateral length standards for nanometrology, consequently supporting miniaturization processes in device fabrication. On this topic, we studied the pattern characteristic dimensions (i.e., center-to-center distance L0 and diameter D) of a cylinder-forming polystyrene-b-poly( methyl methacrylate) PS-b-PMMA (54 kg mol-1, styrene fraction 70%) DBC when confined within periodic SiO2 trenches of different widths (W, ranging between 75 and 600 nm) and fixed length (l, 5.7 µm). The characteristic dimensions of the PMMA cylinder structure in the confined configurations were compared with those obtained on a flat surface (L0 = 27.8 ± 0.5 nm, D = 13.0 ± 1.0 nm). The analysis of D as a function of W evolution indicates that the eccentricity of the PMMA cylinders decreases as a result of the deformation of the cylinder in the direction perpendicular to the trenches. The center-to-center distance in the direction parallel to the long side of the trenches (L0l) is equal to L0 measured on the flat surface, whereas the one along the short side (L0w) is subjected to an appreciable variation (ΔL0w = 5 nm) depending on W. The possibility of finely tuning L0w maintaining constant L0l paves the way to the realization of a DBC-based transfer standard for lateral length calibration with periods in the critical range between 20 and 50 nm wherein no commercial transfer standards are available. A prototype transfer standard with cylindrical holes was used to calibrate the linear correction factor c(Δx')xx' of an atomic force microscope for a scan length of Δx' = 1 µm. The relative standard uncertainty of the correction factor was only 1.3%, and the second-order nonlinear correction was found to be significant.

6.
Nano Lett ; 16(3): 1669-74, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26814601

RESUMO

We describe the first use of a novel photoresist-free X-ray nanopatterning technique to fabricate an electronic device. We have produced a proof-of-concept device consisting of a few Josephson junctions by irradiating microcrystals of the Bi2Sr2CaCu2O8+δ (Bi-2212) superconducting oxide with a 17.6 keV synchrotron nanobeam. Fully functional devices have been obtained by locally turning the material into a nonsuperconducting state by means of hard X-ray exposure. Nano-XRD patterns reveal that the crystallinity is substantially preserved in the irradiated areas that there is no evidence of macroscopic crystal disruption. Indications are that O ions have been removed from the crystals, which could make this technique interesting also for other oxide materials. Direct-write X-ray nanopatterning represents a promising fabrication method exploiting material/material rather than vacuum/material interfaces, with the potential for nanometric resolution, improved mechanical stability, enhanced depth of patterning, and absence of chemical contamination with respect to traditional lithographic techniques.

7.
Nanotoxicology ; 10(1): 1-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25395167

RESUMO

Many studies have shown that the composition of the protein corona dramatically affects the response of cells to nanomaterials (NMs). However, the role of each single protein is still largely unknown. Fibrinogen (FG), one of the most abundant plasma proteins, is believed to mediate foreign-body reactions. Since this protein is absent in cell media used in in vitro toxicological tests the possible FG-mediated effects have not yet been assessed. Here, the effect of FG on the toxicity of three different kinds of inorganic NMs (carbon, SiO2 and TiO2) on alveolar macrophages has been investigated. A set of integrated techniques (UV-vis spectroscopy, dynamic light scattering and sodium dodecyl sulphate-polyacrylamide gel electrophoresis) have been used to study the strength and the kinetics of interaction of FG with the NMs. The inflammatory response of alveolar macrophages (MH-S) exposed to the three NMs associated with FG has also been investigated. We found that FG significantly enhances the cytotoxicity (lactate dehydrogenase leakage) and the inflammatory response (increase in nitric oxide (NO) concentration and NO synthase activation) induced by SiO2, carbon and TiO2 NMs on alveolar macrophages. This effect appears related to the amount of FG interacting with the NMs. In the case of carbon NMs, the activation of fibrinolysis, likely related to the exposure of cryptic sites of FG, was also observed after 24 h. These findings underline the critical role played by FG in the toxic response to NMs.


Assuntos
Carbono/toxicidade , Fibrinogênio/farmacologia , Inflamação/induzido quimicamente , Macrófagos Alveolares/efeitos dos fármacos , Nanoestruturas/toxicidade , Dióxido de Silício/toxicidade , Titânio/toxicidade , Animais , Células Cultivadas , Camundongos
8.
Sci Rep ; 5: 15901, 2015 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-26510889

RESUMO

Focused MeV ion beams with micrometric resolution are suitable tools for the direct writing of conductive graphitic channels buried in an insulating diamond bulk, as already demonstrated for different device applications. In this work we apply this fabrication method to the electrical excitation of color centers in diamond, demonstrating the potential of electrical stimulation in diamond-based single-photon sources. Differently from optically-stimulated light emission from color centers in diamond, electroluminescence (EL) requires a high current flowing in the diamond subgap states between the electrodes. With this purpose, buried graphitic electrode pairs, 10 µm spaced, were fabricated in the bulk of a single-crystal diamond sample using a 6 MeV C microbeam. The electrical characterization of the structure showed a significant current injection above an effective voltage threshold of 150 V, which enabled the stimulation of a stable EL emission. The EL imaging allowed to identify the electroluminescent regions and the residual vacancy distribution associated with the fabrication technique. Measurements evidenced isolated electroluminescent spots where non-classical light emission in the 560-700 nm spectral range was observed. The spectral and auto-correlation features of the EL emission were investigated to qualify the non-classical properties of the color centers.

9.
Sci Rep ; 4: 5428, 2014 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-24962615

RESUMO

The control of emission from localized light sources is an objective of outstanding relevance in nanophotonics. In a recent past, a large number of metallic nanostructures has been proposed to this end, wherein plasmonic modes are exploited as energy carriers on a subwavelength scale. As an interesting alternative, we present here the use of surface modes on patterned dielectric multilayers to deliver electromagnetic power from free-space to localized volumes and vice versa. Thanks to this low-loss energy transfer, proper periodic ring structures are shown to provide a subwavelength focusing of an external radiation onto the multilayer surface. By reciprocity, the radiated power from emitters within the ring center is shown to be efficiently beamed in the free-space, with a well-controlled angular divergence. This mechanism overcomes some important limitations involved in the all-plasmonic approach, while opening new opportunities for hybrid devices in photon management applications such as optical sensing and lighting.

10.
Nano Lett ; 14(3): 1583-9, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24568635

RESUMO

We describe the controlled use of a 17 keV X-ray synchrotron nanobeam to progressively change the oxygen doping level in Bi-2212 superconducting whisker-like single crystals. Our data combine structural and electrical information collected on the same crystals, showing a maximum change in the critical temperature Tc of 1.3 K and a maximum elongation of ∼1 Šin the c-axis length, compared to the as-grown conditions. Simulations of our experimental conditions by means of a finite element model exclude local heating induced by the X-ray nanobeam as a possible cause for the change in the doping level and suggest an important role of secondary electrons. These findings support the possible use of hard X-rays as a novel direct-writing, photoresist-free lithographic process for the fabrication of superconducting devices, with potential nanometric resolution and 3D capability.

11.
Sensors (Basel) ; 15(1): 515-28, 2014 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-25558992

RESUMO

The detection of quantal exocytic events from neurons and neuroendocrine cells is a challenging task in neuroscience. One of the most promising platforms for the development of a new generation of biosensors is diamond, due to its biocompatibility, transparency and chemical inertness. Moreover, the electrical properties of diamond can be turned from a perfect insulator into a conductive material (resistivity ~mΩ·cm) by exploiting the metastable nature of this allotropic form of carbon. A 16­channels MEA (Multi Electrode Array) suitable for cell culture growing has been fabricated by means of ion implantation. A focused 1.2 MeV He+ beam was scanned on a IIa single-crystal diamond sample (4.5 × 4.5 × 0.5 mm3) to cause highly damaged sub-superficial structures that were defined with micrometric spatial resolution. After implantation, the sample was annealed. This process provides the conversion of the sub-superficial highly damaged regions to a graphitic phase embedded in a highly insulating diamond matrix. Thanks to a three-dimensional masking technique, the endpoints of the sub-superficial channels emerge in contact with the sample surface, therefore being available as sensing electrodes. Cyclic voltammetry and amperometry measurements of solutions with increasing concentrations of adrenaline were performed to characterize the biosensor sensitivity. The reported results demonstrate that this new type of biosensor is suitable for in vitro detection of catecholamine release.


Assuntos
Diamante/química , Grafite/química , Impressão/instrumentação , Impressão/métodos , Técnicas Biossensoriais , Técnicas Eletroquímicas , Eletrodos , Imageamento Tridimensional , Íons
12.
Opt Express ; 20(6): 6703-11, 2012 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-22418554

RESUMO

In this work we introduce the use of a patterned polymer-based surface functionalization of a one-dimensional photonic crystal (1DPC) for controlling the emission direction of fluorescent proteins (ptA) via coupling to a set of two Bloch Surface Waves (BSW). Each BSW dispersion branch relates to a micrometric region on the patterned 1DPC, characterized by a well defined chemical characteristic. We report on the enhanced and spatially selective excitation of fluorescent ptA, and on the spatially-resolved detection of polarized emitted radiation coupled to specific BSW modes. As a result, we provide an optical multiplexing technique for the angular separation of fluorescence radiated from micrometric regions having different surface properties, even in the case the emitting labels are spectrally identical. This working principle can be advantageously extended to a multi-step nanometric relief structure for self-referencing biosensing or frequency-multiplexed fluorescence detection.


Assuntos
Imunofluorescência/métodos , Impressão Molecular/métodos , Polímeros/química , Espectrometria de Fluorescência/métodos , Ressonância de Plasmônio de Superfície/métodos , Teste de Materiais , Fótons , Propriedades de Superfície
13.
Mol Pharm ; 8(3): 683-700, 2011 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-21491921

RESUMO

The most frequent drawback of doxorubicin is the onset of drug resistance, due to the active efflux through P-glycoprotein (Pgp). Recently formulations of liposome-encapsulated doxorubicin have been approved for the treatment of tumors resistant to conventional anticancer drugs, but the molecular basis of their efficacy is not known. To clarify by which mechanisms the liposome-encapsulated doxorubicin is effective in drug-resistant cancer cells, we analyzed the effects of doxorubicin and doxorubicin-containing anionic liposomal nanoparticles ("Lipodox") on the drug-sensitive human colon cancer HT29 cells and on the drug-resistant HT29-dx cells. Interestingly, we did not detect any difference in drug accumulation and toxicity between free doxorubicin and Lipodox in HT29 cells, but Lipodox was significantly more effective than doxorubicin in HT29-dx cells, which are rich in Pgp. This effect was lost in HT29-dx cells silenced for Pgp and acquired by HT29 cells overexpressing Pgp. Lipodox was less extruded by Pgp than doxorubicin and inhibited the pump activity. This inhibition was due to a double effect: the liposome shell per se altered the composition of rafts in resistant cells and decreased the lipid raft-associated amount of Pgp, and the doxorubicin-loaded liposomes directly impaired transport and ATPase activity of Pgp. The efficacy of Lipodox was not increased by verapamil and cyclosporin A and was underwent interference by colchicine. Binding assays revealed that Lipodox competed with verapamil for binding Pgp and hampered the interaction of colchicine with this transporter. Site-directed mutagenesis experiments demonstrated that glycine 185 is a critical residue for the direct inhibitory effect of Lipodox on Pgp. Our work describes novel properties of liposomal doxorubicin, investigating the molecular bases that make this formulation an inhibitor of Pgp activity and a vehicle particularly indicated against drug-resistant tumors.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Doxorrubicina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Polietilenoglicóis/farmacologia , Western Blotting , Linhagem Celular Tumoral , Colchicina/farmacologia , Ciclosporina/farmacologia , Doxorrubicina/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Imunofluorescência , Células HT29 , Humanos , Concentração Inibidora 50 , Mutagênese Sítio-Dirigida , Verapamil/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...