RESUMO
Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)-induced cytokine storms constitute the primary cause of coronavirus disease 19(COVID-19)progression,severity,criticality,and death.Gluco-corticoid and anti-cytokine therapies are frequently administered to treat COVID-19,but have limited clinical efficacy in severe and critical cases.Nevertheless,the weaknesses of these treatment modalities have prompted the development of anti-inflammatory therapy against this infection.We found that the broad-spectrum anti-inflammatory agent inosine downregulated proinflammatory interleukin(IL)-6,upregulated anti-inflammatory IL-10,and ameliorated acute inflammatory lung injury caused by mul-tiple infectious agents.Inosine significantly improved survival in mice infected with SARS-CoV-2.It indirectly impeded TANK-binding kinase 1(TBK1)phosphorylation by binding stimulator of interferon genes(STING)and glycogen synthase kinase-3β(GSK3β),inhibited the activation and nuclear trans-location of the downstream transcription factors interferon regulatory factor(IRF3)and nuclear factor kappa B(NF-κB),and downregulated IL-6 in the sera and lung tissues of mice infected with lipopoly-saccharide(LPS),H1N1,or SARS-CoV-2.Thus,inosine administration is feasible for clinical anti-inflammatory therapy against severe and critical COVID-19.Moreover,targeting TBK1 is a promising strategy for inhibiting cytokine storms and mitigating acute inflammatory lung injury induced by SARS-CoV-2 and other infectious agents.
RESUMO
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has claimed millions of lives worldwide, not to mention innumerable losses in the global economy and disruptions in social relationships. Unfortunately, state-of-the-art treatments still lag behind the fast emergence of new variants of concern. The key to resolve this issue is to develop broad-spectrum antivirals with innovative antiviral mechanisms in which coronaviruses are deactivated regardless of their variant development. Herein, we report a new antiviral strategy involving extracellular disintegration of viral proteins that are indispensable for viral infection with hyperanion-grafted enediyne molecules. The sulfate groups ensure low cellular permeability and rather low cytotoxicity of the molecules, while the core enediyne generates reactive radical species and causes significant damage to the spike (S) protein of coronavirus. The enediyne compounds exhibit antiviral activity at micromolar to nanomolar concentrations, and the selectivity index of up to 20,000 against four kinds of human coronaviruses, including the SARS-CoV-2 omicron variant, suggesting the high potential of this new strategy in combating the COVID-19 pandemic.
RESUMO
The ongoing SARS-CoV-2 pandemic represents a brutal reminder of the continual threat of mucosal infectious diseases. Mucosal immunity may provide robust protection at the predominant sites of SARS-CoV-2 infection. However, it remains unclear whether respiratory mucosal administration of DNA vaccines could confer protective immune responses against SARS-CoV-2 challenge due to the insurmountable barriers posed by the airway. Here, we applied self-assembled peptide-poloxamine nanoparticles with mucus-penetrating properties for pulmonary inoculation of a COVID-19 DNA vaccine (pSpike/PP-sNp). Not only displays the pSpike/PP-sNp superior gene-transfection and favorable biocompatibility in the mouse airway, but pSpike/PP-sNp promotes a tripartite immunity consisting of systemic, cellular and mucosal immune responses that are characterized by mucosal IgA secretion, high levels of neutralizing antibodies, and resident memory phenotype T-cell responses in the lungs of mice. Most importantly, pSpike/PP-sNp completely eliminates SARS-CoV-2 infection in both upper and lower respiratory tracts and enables 100% survival rate of mice following lethal SARS-CoV-2 challenge. Our findings indicate PP-sNp might be a promising platform in mediating DNA vaccines to elicit all-around mucosal immunity against SARS-CoV-2.