Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 368(6486): 60-67, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32241943

RESUMO

Precise three-dimensional (3D) atomic structure determination of individual nanocrystals is a prerequisite for understanding and predicting their physical properties. Nanocrystals from the same synthesis batch display what are often presumed to be small but possibly important differences in size, lattice distortions, and defects, which can only be understood by structural characterization with high spatial 3D resolution. We solved the structures of individual colloidal platinum nanocrystals by developing atomic-resolution 3D liquid-cell electron microscopy to reveal critical intrinsic heterogeneity of ligand-protected platinum nanocrystals in solution, including structural degeneracies, lattice parameter deviations, internal defects, and strain. These differences in structure lead to substantial contributions to free energies, consequential enough that they must be considered in any discussion of fundamental nanocrystal properties or applications.

2.
Adv Mater ; : e1906105, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31746516

RESUMO

The operating conditions of functional materials usually involve varying stress fields, resulting in structural changes, whether intentional or undesirable. Complex multiscale microstructures including defects, domains, and new phases, can be induced by mechanical loading in functional materials, providing fundamental insight into the deformation process of the involved materials. On the other hand, these microstructures, if induced in a controllable fashion, can be used to tune the functional properties or to enhance certain performance. In situ nanomechanical tests conducted in scanning/transmission electron microscopes (STEM/TEM) provide a critical tool for understanding the microstructural evolution in functional materials. Here, select results on a variety of functional material systems in the field are presented, with a brief introduction into some newly developed multichannel experimental capabilities to demonstrate the impact of these techniques.

3.
Nanoscale ; 11(36): 16801-16809, 2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31469380

RESUMO

Understanding the mechanisms behind crystal nucleation and growth is a fundamental requirement for the design and production of bespoke nanomaterials with controlled sizes and morphologies. Herein, we select gold (Au) nanoparticles as the model system for our study due to their representative applications in biology, electronics and optoelectronics. We investigate the radiation-induced in situ growth of gold (Au) particles using liquid cell transmission electron microscopy (LCTEM) and study the growth kinetics of non-spherical Au structures. Under controlled electron fluence, liquid flow rate and Au3+ ion supply, we show the favoured diffusion-limited growth of multi-twinned nascent Au seed particles into branched structures when using thin liquid cells (100 nm and 250 nm) in LCTEM, whereas faceted structures (e.g., spheres, rods, and prisms) formed when using a 1 µm thick liquid cell. In addition, we observed that anisotropic Au growth could be modulated by Au-binding amyloid fibrils, which we ascribe to their capability to regulate Au3+ ion diffusion and mass transfer in solution. We anticipate that this study will provide new perspectives on the shape-controlled synthesis of anisotropic metallic nanomaterials using LCTEM.

4.
Sci Adv ; 5(6): eaaw5623, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31187062

RESUMO

The behavior of individual nanocrystals during superlattice phase transitions can profoundly affect the structural perfection and electronic properties of the resulting superlattices. However, details of nanocrystal morphological changes during superlattice phase transitions are largely unknown due to the lack of direct observation. Here, we report the dynamic deformability of PbSe semiconductor nanocrystals during superlattice phase transitions that are driven by ligand displacement. Real-time high-resolution imaging with liquid-phase transmission electron microscopy reveals that following ligand removal, the individual PbSe nanocrystals experience drastic directional shape deformation when the spacing between nanocrystals reaches 2 to 4 nm. The deformation can be completely recovered when two nanocrystals move apart or it can be retained when they attach. The large deformation, which is responsible for the structural defects in the epitaxially fused nanocrystal superlattice, may arise from internanocrystal dipole-dipole interactions.

5.
Nature ; 570(7762): 500-503, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31243385

RESUMO

Nucleation plays a critical role in many physical and biological phenomena that range from crystallization, melting and evaporation to the formation of clouds and the initiation of neurodegenerative diseases1-3. However, nucleation is a challenging process to study experimentally, especially in its early stages, when several atoms or molecules start to form a new phase from a parent phase. A number of experimental and computational methods have been used to investigate nucleation processes4-17, but experimental determination of the three-dimensional atomic structure and the dynamics of early-stage nuclei has been unachievable. Here we use atomic electron tomography to study early-stage nucleation in four dimensions (that is, including time) at atomic resolution. Using FePt nanoparticles as a model system, we find that early-stage nuclei are irregularly shaped, each has a core of one to a few atoms with the maximum order parameter, and the order parameter gradient points from the core to the boundary of the nucleus. We capture the structure and dynamics of the same nuclei undergoing growth, fluctuation, dissolution, merging and/or division, which are regulated by the order parameter distribution and its gradient. These experimental observations are corroborated by molecular dynamics simulations of heterogeneous and homogeneous nucleation in liquid-solid phase transitions of Pt. Our experimental and molecular dynamics results indicate that a theory beyond classical nucleation theory1,2,18 is needed to describe early-stage nucleation at the atomic scale. We anticipate that the reported approach will open the door to the study of many fundamental problems in materials science, nanoscience, condensed matter physics and chemistry, such as phase transition, atomic diffusion, grain boundary dynamics, interface motion, defect dynamics and surface reconstruction with four-dimensional atomic resolution.

6.
ACS Appl Mater Interfaces ; 11(16): 15111-15121, 2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-30938163

RESUMO

Suppression of electronic defects induced by GeO x at the high- k gate oxide/SiGe interface is critical for implementation of high-mobility SiGe channels in complementary metal-oxide-semiconductor (CMOS) technology. Theoretical and experimental studies have shown that a low defect density interface can be formed with an SiO x-rich interlayer on SiGe. Experimental studies in the literature indicate a better interface formation with Al2O3 in contrast to HfO2 on SiGe; however, the mechanism behind this is not well understood. In this study, the mechanism of forming a low defect density interface between Al2O3/SiGe is investigated using atomic layer deposited (ALD) Al2O3 insertion into or on top of ALD HfO2 gate oxides. To elucidate the mechanism, correlations are made between the defect density determined by impedance measurements and the chemical and physical structures of the interface determined by high-resolution scanning transmission electron microscopy and electron energy loss spectroscopy. The compositional analysis reveals an SiO x rich interlayer for both Al2O3/SiGe and HfO2/SiGe interfaces with the insertion of Al2O3 into or on top of the HfO2 oxide. The data is consistent with the Al2O3 insertion inducing decomposition of the GeO x from the interface to form an electrically passive, SiO x rich interface on SiGe. This mechanism shows that nanolaminate gate oxide chemistry cannot be interpreted as resulting from a simple layer-by-layer ideal ALD process, because the precursor or its reaction products can diffuse through the oxide during growth and react at the semiconductor interface. This result shows that in scaled CMOS, remote oxide ALD (oxide ALD on top of the gate oxide) can be used to suppress electronic defects at gate oxide semiconductor interfaces by oxygen scavenging.

7.
Nanoscale ; 11(16): 7609-7612, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30969284

RESUMO

We present the first report of ligand-sensitized, actinide luminescence in a lanthanide nanoparticle host. Amplified luminescence of 248Cm3+ doped in a NaGdF4 lattice is achieved through optical pumping of a surface-localized metal chelator, 3,4,3-LI(1,2-HOPO), capable of sensitizing Cm3+ excited states. The data suggest the possibility of using such materials in theranostic applications, with a ligand-sensitized actinide or radio-lanthanide serving the dual roles of a nuclear decay source for radiotherapeutics, and as a luminescent center or energy transfer conduit to another emissive metal ion, for biological imaging.


Assuntos
Cúrio/química , Nanopartículas/química , Quelantes/química , Ligantes , Medições Luminescentes , Piridonas/química
8.
Nano Lett ; 19(3): 1788-1795, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30741548

RESUMO

Two dimensional (2D) materials have found various applications because of their unique physical properties. For example, graphene has been used as the electron transparent membrane for liquid cell transmission electron microscopy (TEM) due to its high mechanical strength and flexibility, single-atom thickness, chemical inertness, etc. Here, we report using 2D MoS2 as a functional substrate as well as the membrane window for liquid cell TEM, which is enabled by our facile and polymer-free MoS2 transfer process. This provides the opportunity to investigate the growth of Pt nanocrystals on MoS2 substrates, which elucidates the formation mechanisms of such heterostructured 2D materials. We find that Pt nanocrystals formed in MoS2 liquid cells have a strong tendency to align their crystal lattice with that of MoS2, suggesting a van der Waals epitaxial relationship. Importantly, we can study its impact on the kinetics of the nanocrystal formation. The development of MoS2 liquid cells will allow further study of various liquid phenomena on MoS2, and the polymer-free MoS2 transfer process will be implemented in a wide range of applications.

9.
J Am Chem Soc ; 141(2): 763-768, 2019 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-30608684

RESUMO

Nonclassical features of crystallization in solution have been recently identified both experimentally and theoretically. In particular, an amorphous-phase-mediated pathway is found in various crystallization systems as an important route, different from the classical nucleation and growth model. Here, we utilize high-resolution in situ transmission electron microscopy with graphene liquid cells to study amorphous-phase-mediated formation of Ni nanocrystals. An amorphous phase is precipitated in the initial stage of the reaction. Within the amorphous particles, crystalline domains nucleate and eventually form nanocrystals. In addition, unique crystallization behaviors, such as formation of multiple domains and dislocation relaxation, are observed in amorphous-phase-mediated crystallization. Theoretical calculations confirm that surface interactions can induce amorphous precipitation of metal precursors, which is analogous to the surface-induced amorphous-to-crystalline transformation occurring in biomineralization. Our results imply that an unexplored nonclassical growth mechanism is important for the formation of nanocrystals.

10.
Phys Chem Chem Phys ; 21(1): 329-335, 2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-30520905

RESUMO

Heterostructures constructed of graphene and colloidal nanocrystals provide a unique way to exploit the coupled physical properties of the two functional building blocks. Studying the interface structure between the two constituent materials is important to understand the formation mechanism and the resulting physical and chemical properties. Along with ab initio calculations, we elucidate that the bending rigidity and the strong van der Waals interaction of graphene to the metal surface guide the formation of a tight and conformal interface. Using theoretical foundations, we construct colloidal nanocrystal-graphene heterostructures with controlled interfacial structures and directly investigate the cross-sectional structures of them at high resolution by using aberration-corrected transmission electron microscopy. The experimental method and observations we present here will link the empirical methods for the formation of nanocrystal-graphene heterostructures to the mechanistic understanding of their properties.

11.
Chem Commun (Camb) ; 54(97): 13726-13729, 2018 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-30456398

RESUMO

Selective nitrogen-doping of graphene oxide with a high pyridinic N ratio (51%; L-GO) was achieved by laser irradiation of graphene oxide with ammonia. The resulting L-GO exhibited enhanced electrocatalytic properties; specifically, the overpotential of the hydrogen evolution reaction (HER) was improved by over 400 mV at 10 mA cm-2 compared to the pristine graphene oxide.

12.
Nano Lett ; 18(11): 7118-7123, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30265544

RESUMO

Atomic resolution imaging of light elements in electron-transparent materials has long been a challenge. Biomolecular materials, for example, are rapidly altered by incident electrons. We demonstrate a scanning transmission electron microscopy (STEM) technique, called STEM holography, capable of efficient structural analysis of beam-sensitive nanomaterials. STEM holography measures the absolute phase and amplitude of electrons passed through a specimen via interference with a vacuum reference wave. We use an amplitude-dividing nanofabricated grating to prepare multiple beams focused at the sample. We configure the postspecimen microscope imaging system to overlap the beams, forming an interference pattern. We record and analyze the pattern at each 2D-raster-scan-position, reconstructing the complex object wave. As a demonstration, we image gold nanoparticles on an amorphous carbon substrate at 2.4 Å resolution. STEM holography offers higher contrast of the carbon while maintaining gold atomic lattice resolution compared to high angle annular dark field STEM.

13.
Angew Chem Int Ed Engl ; 57(40): 13172-13176, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30136423

RESUMO

We demonstrate the guiding principles behind simple two dimensional self-assembly of MOF nanoparticles (NPs) and oleic acid capped iron oxide (Fe3 O4 ) NCs into a uniform two-dimensional bi-layered superstructure. This self-assembly process can be controlled by the energy of ligand-ligand interactions between surface ligands on Fe3 O4 NCs and Zr6 O4 (OH)4 (fumarate)6 MOF NPs. Scanning transmission electron microscopy (TEM)/energy-dispersive X-ray spectroscopy and TEM tomography confirm the hierarchical co-assembly of Fe3 O4 NCs with MOF NPs as ligand energies are manipulated to promote facile diffusion of the smaller NCs. First-principles calculations and event-driven molecular dynamics simulations indicate that the observed patterns are dictated by combination of ligand-surface and ligand-ligand interactions. This study opens a new avenue for design and self-assembly of MOFs and NCs into high surface area assemblies, mimicking the structure of supported catalyst architectures, and provides a thorough fundamental understanding of the self-assembly process, which could be a guide for designing functional materials with desired structure.

14.
Sci Rep ; 8(1): 10239, 2018 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-29980704

RESUMO

We report quantitative characterization of the high temperature oxidation process by using electron tomography and energy-dispersive X-ray spectroscopy. As a proof of principle, we performed 3D imaging of the oxidation layer of a model system (Mo3Si) at nanoscale resolution with elemental specificity and probed the oxidation kinetics as a function of the oxidation time and the elevated temperature. Our tomographic reconstructions provide detailed 3D structural information of the surface oxidation layer of the Mo3Si system, revealing the evolution of oxidation behavior of Mo3Si from early stage to mature stage. Based on the relative rate of oxidation of Mo3Si, the volatilization rate of MoO3 and reactive molecular dynamics simulations, we propose a model to explain the mechanism of the formation of the porous silica structure during the oxidation process of Mo3Si. We expect that this 3D quantitative characterization method can be applied to other material systems to probe their structure-property relationships in different environments.

15.
Adv Mater ; 30(27): e1800199, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29797433

RESUMO

Inversion symmetry breaking has become a vital research area in modern magnetism with phenomena including the Rashba effect, spin Hall effect, and the Dzyaloshinskii-Moriya interaction (DMI)-a vector spin exchange. The latter one may stabilize chiral spin textures with topologically nontrivial properties, such as Skyrmions. So far, chiral spin textures have mainly been studied in helimagnets and thin ferromagnets with heavy-element capping. Here, the concept of chirality driven by interfacial DMI is generalized to complex multicomponent systems and demonstrated on the example of chiral ferrimagnetism in amorphous GdCo films. Utilizing Lorentz microscopy and X-ray magnetic circular dichroism spectroscopy, and tailoring thickness, capping, and rare-earth composition, reveal that 2 nm thick GdCo films preserve ferrimagnetism and stabilize chiral domain walls. The type of chiral domain walls depends on the rare-earth composition/saturation magnetization, enabling a possible temperature control of the intrinsic properties of ferrimagnetic domain walls.

16.
Nano Lett ; 18(4): 2351-2357, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29558623

RESUMO

Transition metal dichalcogenides (TMDs) are particularly sensitive to mechanical strain because they are capable of experiencing high atomic displacements without nucleating defects to release excess energy. Being promising for photonic applications, it has been shown that as certain phases of layered TMDs MX2 (M = Mo or W; X = S, Se, or Te) are scaled to a thickness of one monolayer, the photoluminescence response is dramatically enhanced due to the emergence of a direct electronic band gap compared with their multilayer or bulk counterparts, which typically exhibit indirect band gaps. Recently, mechanical strain has also been predicted to enable direct excitonic recombination in these materials, in which large changes in the photoluminescence response will occur during an indirect-to-direct band gap transition brought on by elastic tensile strain. Here, we demonstrate an enhancement of 2 orders of magnitude in the photoluminescence emission intensity in uniaxially strained single crystalline WSe2 bilayers. Through a theoretical model that includes experimentally relevant system conditions, we determine this amplification to arise from a significant increase in direct excitonic recombination. Adding confidence to the high levels of elastic strain achieved in this report, we observe strain-independent, mode-dependent Grüneisen parameters over the entire range of tensile strain (1-3.59%), which were obtained as 1.149 ± 0.027, 0.307 ± 0.061, and 0.357 ± 0.103 for the E2g, A1g, and A21g optical phonon modes, respectively. These results can inform the predictive strain-engineered design of other atomically thin indirect semiconductors, in which a decrease in out-of-plane bonding strength may lead to an increase in the strength of strain-coupled optoelectronic effects.

17.
ACS Nano ; 11(9): 8579-8589, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28771324

RESUMO

Determining the structural origins of amyloid fibrillation is essential for understanding both the pathology of amyloidosis and the rational design of inhibitors to prevent or reverse amyloid formation. In this work, the decisive roles of peptide structures on amyloid self-assembly and morphological diversity were investigated by the design of eight amyloidogenic peptides derived from islet amyloid polypeptide. Among the segments, two distinct morphologies were highlighted in the form of twisted and planar (untwisted) ribbons with varied diameters, thicknesses, and lengths. In particular, transformation of amyloid fibrils from twisted ribbons into untwisted structures was triggered by substitution of the C-terminal serine with threonine, where the side chain methyl group was responsible for the distinct morphological change. This effect was confirmed following serine substitution with alanine and valine and was ascribed to the restriction of intersheet torsional strain through the increased hydrophobic interactions and hydrogen bonding. We also studied the variation of fibril morphology (i.e., association and helicity) and peptide aggregation propensity by increasing the hydrophobicity of the peptide side group, capping the N-terminus, and extending sequence length. We anticipate that our insights into sequence-dependent fibrillation and morphological diversity will shed light on the structural interpretation of amyloidogenesis and development of structure-specific imaging agents and aggregation inhibitors.


Assuntos
Amiloide/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Sequência de Aminoácidos , Amiloide/ultraestrutura , Humanos , Ligações de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Polipeptídeo Amiloide das Ilhotas Pancreáticas/ultraestrutura , Microscopia de Força Atômica , Conformação Proteica em Folha beta , Difração de Raios X
18.
Ultramicroscopy ; 182: 36-43, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28651199

RESUMO

In the past 15 years, the advent of aberration correction technology in electron microscopy has enabled materials analysis on the atomic scale. This is made possible by precise arrangements of multipole electrodes and magnetic solenoids to compensate the aberrations inherent to any focusing element of an electron microscope. Here, we describe an alternative method to correct for the spherical aberration of the objective lens in scanning transmission electron microscopy (STEM) using a passive, nanofabricated diffractive optical element. This holographic device is installed in the probe forming aperture of a conventional electron microscope and can be designed to remove arbitrarily complex aberrations from the electron's wave front. In this work, we show a proof-of-principle experiment that demonstrates successful correction of the spherical aberration in STEM by means of such a grating corrector (GCOR). Our GCOR enables us to record aberration-corrected high-resolution high-angle annular dark field (HAADF-) STEM images, although yet without advancement in probe current and resolution. Improvements in this technology could provide an economical solution for aberration-corrected high-resolution STEM in certain use scenarios.

19.
Nat Commun ; 8: 14961, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28488672

RESUMO

A range of modern applications require large and tunable dielectric, piezoelectric or pyroelectric response of ferroelectrics. Such effects are intimately connected to the nature of polarization and how it responds to externally applied stimuli. Ferroelectric susceptibilities are, in general, strongly temperature dependent, diminishing rapidly as one transitions away from the ferroelectric phase transition (TC). In turn, researchers seek new routes to manipulate polarization to simultaneously enhance susceptibilities and broaden operational temperature ranges. Here, we demonstrate such a capability by creating composition and strain gradients in Ba1-xSrxTiO3 films which result in spatial polarization gradients as large as 35 µC cm-2 across a 150 nm thick film. These polarization gradients allow for large dielectric permittivity with low loss (ɛr≈775, tan δ<0.05), negligible temperature-dependence (13% deviation over 500 °C) and high-dielectric tunability (greater than 70% across a 300 °C range). The role of space charges in stabilizing polarization gradients is also discussed.

20.
Ultramicroscopy ; 180: 173-179, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28434783

RESUMO

Recent development in fast pixelated detector technology has allowed a two dimensional diffraction pattern to be recorded at every probe position of a two dimensional raster scan in a scanning transmission electron microscope (STEM), forming an information-rich four dimensional (4D) dataset. Electron ptychography has been shown to enable efficient coherent phase imaging of weakly scattering objects from a 4D dataset recorded using a focused electron probe, which is optimised for simultaneous incoherent Z-contrast imaging and spectroscopy in STEM. Therefore coherent phase contrast and incoherent Z-contrast imaging modes can be efficiently combined to provide a good sensitivity of both light and heavy elements at atomic resolution. In this work, we explore the application of electron ptychography for atomic resolution imaging of strongly scattering crystalline specimens, and present experiments on imaging crystalline specimens including samples containing defects, under dynamical channelling conditions using an aberration corrected microscope. A ptychographic reconstruction method called Wigner distribution deconvolution (WDD) was implemented. Experimental results and simulation results suggest that ptychography provides a readily interpretable phase image and great sensitivity for imaging light elements at atomic resolution in relatively thin crystalline materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA