Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34850118

RESUMO

The Plant Resistance Genes database (PRGdb; http://prgdb.org/prgdb4/) has been greatly expanded, keeping pace with the increasing amount of available knowledge and data (sequenced proteomes, cloned genes, public analysis data, etc.). The easy-to-use style of the database website has been maintained, while an updated prediction tool, more data and a new section have been added. This new section will contain plant resistance transcriptomic experiments, providing additional easy-to-access experimental information. DRAGO3, the tool for automatic annotation and prediction of plant resistance genes behind PRGdb, has been improved in both accuracy and sensitivity, leading to more reliable predictions. PRGdb offers 199 reference resistance genes and 586.652 putative resistance genes from 182 sequenced proteomes. Compared to the previous release, PRGdb 4.0 has increased the number of reference resistance genes from 153 to 199, the number of putative resistance genes from 177K from 76 proteomes to 586K from 182 sequenced proteomes. A new section has been created that collects plant-pathogen transcriptomic data for five species of agricultural interest. Thereby, with these improvements and data expansions, PRGdb 4.0 aims to serve as a reference to the plant scientific community and breeders worldwide, helping to further study plant resistance mechanisms that contribute to fighting pathogens.

2.
Hortic Res ; 8(1): 212, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34593775

RESUMO

Many studies showed that few degrees above tomato optimum growth temperature threshold can lead to serious loss in production. Therefore, the development of innovative strategies to obtain tomato cultivars with improved yield under high temperature conditions is a main goal both for basic genetic studies and breeding activities. In this paper, a F4 segregating population was phenotypically evaluated for quantitative and qualitative traits under heat stress conditions. Moreover, a genotyping by sequencing (GBS) approach has been employed for building up genomic selection (GS) models both for yield and soluble solid content (SCC). Several parameters, including training population size, composition and marker quality were tested to predict genotype performance under heat stress conditions. A good prediction accuracy for the two analyzed traits (0.729 for yield production and 0.715 for SCC) was obtained. The predicted models improved the genetic gain of selection in the next breeding cycles, suggesting that GS approach is a promising strategy to accelerate breeding for heat tolerance in tomato. Finally, the annotation of SNPs located in gene body regions combined with QTL analysis allowed the identification of five candidates putatively involved in high temperatures response, and the building up of a GS model based on calibrated panel of SNP markers.

3.
Saf Health Work ; 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34703629

RESUMO

Background: The aim of the present study was to evaluate the psychological well-being (PWB) during the coronavirus disease (COVID-19) pandemic in workers of a multinational company. Methods: Employees (aged ≥ 18 years) were recruited from Latin American, North American, New Zealand and European sites of a multinational company operative during all the pandemic period. The self-reported Psychological General Well Being Index (PGWBI) was employed to assess the global PWB and the effects on 6 sub-domains: anxiety, depressed mood, positive well-being, self-control, general health and vitality. The influencing role of age, gender, geographical location, COVID-19 epidemiology, and restrictive measures adopted to control the pandemic was explored. Results: A total of 1335 workers completed the survey. The aggregate median PWB global score was in a positive range, with significantly better outcomes detected in the Mexican and Colombian Latin American sites compared to the other worldwide countries (p<0.001). Among the European locations, a significantly higher PWB score was determined in Spain compared to the German and French sites (p<0.05). Comparable geographical trends were demonstrated for all the PWB sub-domains. Male workers had a significantly better PWB compared to females (p<0.05), while a negative correlation emerged with aging (p=0.01). COVID-19 epidemiology and pandemic control measures had no clear effects on PWB. Conclusions: Monitoring PWB and the impact of individual and pandemic-related variables may be helpful to clarify the mental health effects of pandemic, define targeted psychological-supporting measures, also in the workplace, in order to face such a complex situation in a more constructive way.

4.
Planta ; 254(4): 82, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34559316

RESUMO

MAIN CONCLUSION: Genome-wide annotation reveals that the gene birth-death process of the Cucurbita R family is associated with a species-specific diversification of TNL and CNL protein classes. The Cucurbitaceae family includes nearly 1000 plant species known universally as cucurbits. Cucurbita genus includes many economically important worldwide crops vulnerable to more than 200 pathogens. Therefore, the identification of pathogen-recognition genes is of utmost importance for this genus. The major class of plant-resistance (R) genes encodes nucleotide-binding site and leucine-rich repeat (NLR) proteins, and is divided into three sub-classes namely, TIR-NB-LRR (TNL), CC-NB-LRR (CNL) and RPW8-NB-LRR (RNL). Although the characterization of the NLR gene family has been carried out in important Cucurbita species, this information is still linked to the availability of sequenced genomes. In this study, we analyzed 40 de novo transcriptomes and 5 genome assemblies, which were explored to investigate the Cucurbita expressed-NLR (eNLR) and NLR repertoires using an ad hoc gene annotation approach. Over 1850 NLR-encoding genes were identified, finely characterized and compared to 96 well-characterized plant R-genes. The maximum likelihood analyses revealed an unusual diversification of CNL/TNL genes and a strong RNL conservation. Indeed, several gene gain and loss events have shaped the Cucurbita NLR family. Finally, to provide a first validation step Cucurbita, eNLRs were explored by real-time PCR analysis. The NLR repertories of the 12 Cucurbita species presented in this paper will be useful to discover novel R-genes.


Assuntos
Cucurbita , Cucurbita/genética , Cucurbita/metabolismo , Genes de Plantas/genética , Genoma de Planta , Família Multigênica , Proteínas NLR/genética , Filogenia , Doenças das Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma
5.
BMC Plant Biol ; 21(1): 358, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34348650

RESUMO

BACKGROUND: The South America pinworm, Tuta absoluta, is a destructive pest of tomato that causes important losses worldwide. Breeding of resistant/tolerant tomato cultivars could be an effective strategy for T. absoluta management but, despite the economic importance of tomato, very limited information is available about its response to this treat. To elucidate the defense mechanisms to herbivore feeding a comparative analysis was performed between a tolerant and susceptible cultivated tomato at both morphological and transcriptome level to highlight constitutive leaf barriers, molecular and biochemical mechanisms to counter the effect of T. absoluta attack. RESULTS: The tolerant genotype showed an enhanced constitutive barrier possibly as result of the higher density of trichomes and increased inducible reactions upon mild infestation thanks to the activation/repression of key transcription factors regulating genes involved in cuticle formation and cell wall strength as well as of antinutritive enzymes, and genes involved in the production of chemical toxins and bioactive secondary metabolites. CONCLUSIONS: Overall, our findings suggest that tomato resilience to the South America pinworm is achieved by a combined strategy between constitutive and induced defense system. A well-orchestrated modulation of plant transcription regulation could ensure a trade-off between defense needs and fitness costs. Our finding can be further exploited for developing T. absoluta tolerant cultivars, acting as important component of integrated pest management strategy for more sustainable production.


Assuntos
Regulação da Expressão Gênica de Plantas , Lycopersicon esculentum/genética , Doenças das Plantas/genética , Folhas de Planta/genética , Transcriptoma , Animais , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Interações Hospedeiro-Parasita , Larva/fisiologia , Lycopersicon esculentum/metabolismo , Lycopersicon esculentum/parasitologia , Mariposas/fisiologia , Doenças das Plantas/parasitologia , Folhas de Planta/metabolismo , Folhas de Planta/parasitologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA-Seq/métodos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tricomas/genética , Tricomas/metabolismo , Tricomas/parasitologia
6.
Ann Work Expo Health ; 65(6): 617-634, 2021 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-33616163

RESUMO

The widespread application of additive manufacturing (AM) technologies, commonly known as three-dimensional (3D) printing, in industrial and home-business sectors, and the expected increase in the number of workers and consumers that use these devices, have raised concerns regarding the possible health implications of 3D printing emissions. To inform the risk assessment and management processes, this review evaluates available data concerning exposure assessment in AM workplaces and possible effects of 3D printing emissions on humans identified through in vivo and in vitro models in order to inform risk assessment and management processes. Peer-reviewed literature was identified in Pubmed, Scopus, and ISI Web of Science databases. The literature demonstrated that a significant fraction of the particles released during 3D printing could be in the ultrafine size range. Depending upon the additive material composition, increased levels of metals and volatile organic compounds could be detected during AM operations, compared with background levels. AM phases, specific job tasks performed, and preventive measures adopted may all affect exposure levels. Regarding possible health effects, printer emissions were preliminary reported to affect the respiratory system of involved workers. The limited number of workplace studies, together with the great variety of AM techniques and additive materials employed, limit generalizability of exposure features. Therefore, greater scientific efforts should be focused at understanding sources, magnitudes, and possible health effects of exposures to develop suitable processes for occupational risk assessment and management of AM technologies.


Assuntos
Exposição Ocupacional , Compostos Orgânicos Voláteis , Humanos , Material Particulado , Impressão Tridimensional , Medição de Risco , Compostos Orgânicos Voláteis/análise
7.
Genes (Basel) ; 12(2)2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33514027

RESUMO

Tomato (Solanum lycopersicum L.) is a model system for studying the molecular basis of resistance in plants. The investigation of evolutionary dynamics of tomato resistance (R)-loci provides unique opportunities for identifying factors that promote or constrain genome evolution. Nucleotide-binding domain and leucine-rich repeat (NB-LRR) receptors belong to one of the most plastic and diversified families. The vast amount of genomic data available for Solanaceae and wild tomato relatives provides unprecedented insights into the patterns and mechanisms of evolution of NB-LRR genes. Comparative analysis remarked a reshuffling of R-islands on chromosomes and a high degree of adaptive diversification in key R-loci induced by species-specific pathogen pressure. Unveiling NB-LRR natural variation in tomato and in other Solanaceae species offers the opportunity to effectively exploit genetic diversity in genomic-driven breeding programs with the aim of identifying and introducing new resistances in tomato cultivars. Within this motivating context, we reviewed the repertoire of NB-LRR genes available for tomato improvement with a special focus on signatures of adaptive processes. This issue is still relevant and not thoroughly investigated. We believe that the discovery of mechanisms involved in the generation of a gene with new resistance functions will bring great benefits to future breeding strategies.


Assuntos
Genes de Plantas , Lycopersicon esculentum/genética , Melhoramento Vegetal , Resistência à Doença/genética , Evolução Molecular , Genoma de Planta , Estudo de Associação Genômica Ampla , Humanos , Família Multigênica , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
8.
Plants (Basel) ; 9(9)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32962095

RESUMO

Genomic selection (GS) is a predictive approach that was built up to increase the rate of genetic gain per unit of time and reduce the generation interval by utilizing genome-wide markers in breeding programs. It has emerged as a valuable method for improving complex traits that are controlled by many genes with small effects. GS enables the prediction of the breeding value of candidate genotypes for selection. In this work, we address important issues related to GS and its implementation in the plant context with special emphasis on tomato breeding. Genomic constraints and critical parameters affecting the accuracy of prediction such as the number of markers, statistical model, phenotyping and complexity of trait, training population size and composition should be carefully evaluated. The comparison of GS approaches for facilitating the selection of tomato superior genotypes during breeding programs is also discussed. GS applied to tomato breeding has already been shown to be feasible. We illustrated how GS can improve the rate of gain in elite line selection, and descendent and backcross schemes. The GS schemes have begun to be delineated and computer science can provide support for future selection strategies. A new promising breeding framework is beginning to emerge for optimizing tomato improvement procedures.

9.
J Occup Health ; 62(1): e12116, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32515906

RESUMO

OBJECTIVES: Migraine is a chronic neurological disorder characterized by recurrent attacks of headache, mainly affecting the working age population with a great socioeconomic impact. The etiology of migraine is still uncertain, and various individual and/or environmental risk factors have been suggested as triggers of the attacks, including irregularities in the sleep-wake rhythm. In this perspective, it is possible that shift and night work, affecting circadian rhythms, may play a key function in the disease pathogenesis. Therefore, aim of this review was to provide an overview on the possible association between shift works and migraine development or clinical outcomes. METHODS: A systematic review of literature studies available in Pubmed, Scopus, and ISI Web of Science databases, addressing the possible shift work-migraine relationship was performed. RESULTS: Conflicting data emerged from the revised studies. Some results supported a positive association between migraine prevalence and shift works, according to peculiar job tasks, seniority in shift works, specific work schedules, and number of night shifts performed in a month. However, other investigations failed to confirm such findings. CONCLUSIONS: The limited number of available studies, their cross-sectional nature, the different criteria employed for migraine diagnosis, and the various shift work schedules analyzed, together with exposure to other confounding factors on workplace do not allow to extrapolate definite conclusions on shift work-migraine relationship. From an occupational health perspective, further studies appear necessary to better understand such exposure-disease association and possibly define risk assessment and management strategies to protect the health of susceptible and/or migraine affected workers.


Assuntos
Transtornos de Enxaqueca/etiologia , Doenças Profissionais/etiologia , Jornada de Trabalho em Turnos , Transtornos do Sono do Ritmo Circadiano/etiologia , Humanos
10.
Noise Health ; 22(107): 77-89, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33402608

RESUMO

Background: Noise-induced hearing loss (NIHL) is one of the leading causes of acquired sensorineural hearing loss. However, molecular mechanisms responsible for its pathogenesis remain to be elucidated. Epigenetic changes, i.e. DNA methylation, histone and microRNA expression modifications may function as a link between noise exposure and hearing loss. Therefore, the aim of the present review was to assess whether epigenetic alterations may serve as biomarkers of noise exposure or early effect. Materials and Methods: A systematic review of studies available in Pubmed, Scopus, and ISI Web of Science databases was performed. Results: Noise exposure was able to induce alterations in DNA methylation levels in workers and animal models, resulting in expression changes of genes related to hearing loss and also to extra-auditory effects. Differently expressed microRNAs were determined in NIHL workers compared to noise-exposed subjects with normal hearing, supporting their possible role as biomarkers of effect. Acoustic trauma affected histon acethylation and methylation levels in animals, suggesting their influence in the pathogenesis of acute noise-induced damage and their role as targets for potential therapeutic treatments. Conclusions: Although preliminary data suggest a relationship between noise and epigenetic effects, the limited number of studies, their different methodologies and the lack of adequate characterization of acoustic insults prevent definite conclusions. In this context, further research aimed to define the epigenetic impact of workplace noise exposure and the role of such alterations in predicting hearing loss may be important for the adoption of correct risk assessment and management strategies in occupational settings.


Assuntos
Exposição Ambiental/efeitos adversos , Epigênese Genética/genética , Perda Auditiva Provocada por Ruído/genética , Ruído/efeitos adversos , Doenças Profissionais/genética , Animais , Metilação de DNA/genética , Marcadores Genéticos/genética , Histonas/metabolismo , Humanos , MicroRNAs/metabolismo , Medição de Risco
11.
Planta ; 251(1): 32, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31823009

RESUMO

MAIN CONCLUSION: Genomic and transcriptomic studies in plants and, more in deep, in grapevine reveal that the disease-resistance RNL gene family is highly variable. RNLs (RPW8-NLRs) are a phylogenetically distinct class of nucleotide oligomerization domain (NOD)-like receptors (NLRs) identified in plants. Two RNLs, namely, the NRG1 (N Requirement Gene 1) and the ADR1 (Activated Disease Resistance 1), have been characterized; however, little is known about the RNL evolutionary history in higher plants. To trace the diversification of RNL gene subfamily, we scanned the NLR proteins of 73 plant genomes belonging to 29 taxa, revealing a noticeable diversification across species and within the same genus or botanic family together with a conspicuous expansion in important crop species. To explore the RNL variability in Vitis vinifera and gain information with respect to their structure, evolutionary diversification of five grape genomes ('Aglianico', 'Falanghina', 'Sultanina', 'Tannat', and 'Nebbiolo') has been compared to the reference genome ('Pinot Noir'). The number of RNLs ranged from 6 ('Sultanina') to 14 ('Nebbiolo'), in contrast to the 10 'Pinot Noir' RNLs. The phylogenetic study on grapevine RNLs revealed that all collapsed into NRG1-clade, rather than four. To investigate more in depth the means of intraspecific variability of grape RNL copies, a transcriptomic profiling in response to powdery mildew (PM) infection was carried out through qRT-PCRs and public databases interrogation. The RNL expression variability identified in transcriptome data sets supports the hypothesis of a functional expansion/contraction in grapevine varieties. Although no direct correlations between grapevine PM-resistance and RNL expression was identified, our work can provide good candidates for functional studies able to elucidate the putative "helper" role of RNLs in grape immune signalling.


Assuntos
Resistência à Doença/genética , Genes de Plantas/genética , Sementes/genética , Sementes/metabolismo , Vitis/genética , Vitis/metabolismo , Ascomicetos , Evolução Molecular , Perfilação da Expressão Gênica , Genoma de Planta , Neuregulina-1 , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Transcriptoma
12.
Cancers (Basel) ; 11(12)2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31783577

RESUMO

Breast cancers include a heterogeneous group of diseases with clinical behaviors that may vary according to the hormonal receptor status. However, limited knowledge is available on the role of breast cancer environmental and occupational risk factors in the onset of specific molecular disease phenotypes. Therefore, the aim of this review was to provide an overview on the possible correlation between occupational chemical exposures and breast cancers with a specific receptor pattern. Pubmed, Scopus, and ISI Web of Science databases were systematically reviewed to identify all the studies addressing chemical exposure in workplaces and risk of breast cancer classified according to the presence of estrogen and/or progesterone receptors. Some positive associations were reported between solvent, polycyclic aromatic hydrocarbon, organophosphoric insecticide, and synthetic fiber exposure and estrogen receptor-positive cases, while other investigations demonstrated a relationship with receptor-negative tumors or failed to detect any significant effect. Overall, further investigation should overcome limitations due to the self-reported information on work histories, the chemical classification in general categories, and the lack of environmental or biological monitoring exposure data. This may support the development of suitable and individually "tailored" occupational risk assessment and management strategies to protect the health of exposed workers, particularly those with hypersusceptibility conditions.

13.
Genome Biol Evol ; 11(12): 3466-3477, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31730154

RESUMO

Plant innate immunity mostly relies on nucleotide-binding (NB) and leucine-rich repeat (LRR) intracellular receptors to detect pathogen-derived molecules and to induce defense responses. A multitaxa reconstruction of NB-domain associations allowed us to identify the first NB-LRR arrangement in the Chlorophyta division of the Viridiplantae. Our analysis points out that the basic NOD-like receptor (NLR) unit emerged in Chlorophytes by horizontal transfer and its diversification started from Toll/interleukin receptor-NB-LRR members. The operon-based genomic structure of Chromochloris zofingiensis NLR copies suggests a functional origin of NLR clusters. Moreover, the transmembrane signatures of NLR proteins in the unicellular alga C. zofingiensis support the hypothesis that the NLR-based immunity system of plants derives from a cell-surface surveillance system. Taken together, our findings suggest that NLRs originated in unicellular algae and may have a common origin with cell-surface LRR receptors.


Assuntos
Transferência Genética Horizontal , Proteínas NLR/genética , Proteínas de Plantas/genética , Domínios Proteicos/genética , Clorófitas/classificação , Clorófitas/genética , Resistência à Doença/genética , Evolução Molecular , Genoma de Planta/genética , Genômica , Proteínas NLR/metabolismo , Motivos de Nucleotídeos , Óperon , Filogenia , Imunidade Vegetal , Proteínas de Plantas/metabolismo , Plantas/classificação , Plantas/genética
14.
Nanomedicine (Lond) ; 14(19): 2613-2629, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31609676

RESUMO

Nanotechnology may offer innovative solutions to overcome the physiological and anatomical barriers that make the diagnosis and treatment of ear diseases an extremely challenging issue. However, despite the solutions provided by nano-applications, the still little-known toxicological behavior of nanomaterials raised scientific concerns regarding their biosafety for treated patients and exposed workers. Therefore, this review provides an overview on recent developments and upcoming opportunities in nanoscale otological applications, and critically assesses possible adverse effects of nanosized compounds on ear structures and hearing functionality. Although such preliminary data do not allow to draw definite strategies for the evaluation of nanomaterial ototoxicity, they can still be useful to improve scientific community and workforce awareness regarding possible nanomaterial adverse effects on ear.


Assuntos
Otopatias/terapia , Nanoestruturas/uso terapêutico , Nanotecnologia/normas , Saúde do Trabalhador/normas , Contenção de Riscos Biológicos/normas , Otopatias/complicações , Humanos , Nanoestruturas/efeitos adversos , Medição de Risco
15.
Plant Physiol Biochem ; 143: 50-60, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31479882

RESUMO

The huge amounts of biomass residues, remaining in the field after tomato fruits harvesting, can be utilized to produce bioenergy. A multiple level approach aimed to characterize two Solanum pennellii introgression lines (ILs), with contrasting phenotypes for plant architecture and biomass was carried out. The study of gene expression dynamics, microscopy cell traits and qualitative and quantitative cell wall chemical compounds variation enabled the discovery of key genes and cell processes involved biomass accumulation and composition. Enhanced biomass production observed in IL2-6 line is due to a more effective coordination of chloroplasts and mitochondria energy fluxes. Microscopy analysis revealed a higher number of cells and chloroplasts in leaf epidermis in the high biomass line whilst chemical measurements on the two lines pointed out striking differences in the cell wall composition and organization. Taken together, our findings shed light on the mechanisms underlying the tomato biomass production and processability.


Assuntos
Parede Celular/metabolismo , Lycopersicon esculentum/metabolismo , Biomassa , Parede Celular/fisiologia , Lycopersicon esculentum/fisiologia , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Locos de Características Quantitativas/genética
16.
Sci Rep ; 9(1): 11769, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31409808

RESUMO

With approximately 450 species, spiny Solanum species constitute the largest monophyletic group in the Solanaceae family, but a high-quality genome assembly from this group is presently missing. We obtained a chromosome-anchored genome assembly of eggplant (Solanum melongena), containing 34,916 genes, confirming that the diploid gene number in the Solanaceae is around 35,000. Comparative genomic studies with tomato (S. lycopersicum), potato (S. tuberosum) and pepper (Capsicum annuum) highlighted the rapid evolution of miRNA:mRNA regulatory pairs and R-type defense genes in the Solanaceae, and provided a genomic basis for the lack of steroidal glycoalkaloid compounds in the Capsicum genus. Using parsimony methods, we reconstructed the putative chromosomal complements of the key founders of the main Solanaceae clades and the rearrangements that led to the karyotypes of extant species and their ancestors. From 10% to 15% of the genes present in the four genomes were syntenic paralogs (ohnologs) generated by the pre-γ, γ and T paleopolyploidy events, and were enriched in transcription factors. Our data suggest that the basic gene network controlling fruit ripening is conserved in different Solanaceae clades, and that climacteric fruit ripening involves a differential regulation of relatively few components of this network, including CNR and ethylene biosynthetic genes.


Assuntos
Cromossomos de Plantas , Evolução Molecular , Genoma de Planta , Solanum melongena/genética , Etilenos/metabolismo , Redes Reguladoras de Genes , MicroRNAs/genética , Solanum melongena/metabolismo
17.
Phytochem Anal ; 30(5): 556-563, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31286582

RESUMO

INTRODUCTION: Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) is one of the most devastating and harmful pests of tomato (Solanum lycopersicum) crops causing up to 80-100% yield losses. A large arsenal of plant metabolites is induced by the leafminer feeding including defence compounds that could differ among varieties. OBJECTIVE: To compare the metabolomic changes of different genotypes of tomato (tolerant "T", susceptible "S" and "F1" hybrid obtained between T and S) after exposition to T. absoluta. METHODOLOGY: Nuclear magnetic resonance (NMR) spectroscopy followed by multivariate data analysis were performed to analyse the metabolic profiles of control and infested samples on three different tomato genotypes. RESULTS: Signals related to GABA (γ-aminobutyric acid) were relatively much higher in all infested samples compared to the non-infested plants used as control. Infested T genotype samples were the most abundant in organic acids, including fatty acids and acyl sugars, chlorogenic acid, neo-chlorogenic acid and feruloyl quinic acid, indicating a clear link between the exposure to leafminer. Results also showed an increase of trigonelline in all tomato varieties after exposition to T. absoluta. CONCLUSION: Metabolomics approach based on NMR spectroscopy followed by multivariate data analysis allowed for a detailed metabolite profile of plant defences, providing fundamental information for breeding programmes in plant crops.


Assuntos
Lepidópteros/fisiologia , Lycopersicon esculentum/parasitologia , Espectroscopia de Ressonância Magnética/métodos , Metabolômica , Animais , Comportamento Alimentar , Genes de Plantas , Lycopersicon esculentum/genética , Análise Multivariada
18.
BMC Plant Biol ; 19(1): 150, 2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30995906

RESUMO

BACKGROUND: Powdery mildew (PM) is a widespread fungal disease of plants in temperate climates, causing significant economic losses in agricultural settings. Specific homologs of the MLO gene family are PM susceptibility factors, as their loss-of function results in durable PM resistance (mlo resistance) in several plant species. The role of MLO susceptibility genes in plant-pathogen interactions is still elusive, however it is known that they are strongly upregulated following PM infection. RESULTS: In this study, we investigated the structure of 414 Putative Promoter Regions (PPRs) of MLO genes and highlighted motif and regulatory element patterns related to genomic relationships among species and phylogenetic distance among homologs. A TC box-like motif and a thymine-rich motif were found to be overrepresented in MLO genes transcriptionally upregulated upon infection with PM fungi. As proof of concept, we showed that the expression of a melon (Cucumis melo L.) gene enriched for the motifs above mentioned was strongly upregulated upon infection with the PM fungus Podosphaera xanthii. CONCLUSION: While identifying a candidate MLO susceptibility gene in melon, this study provides insight on the transcriptional control of MLO genes and indicates diagnostic features useful to identify MLO susceptibility genes across species affected by the PM disease.


Assuntos
Sequência Conservada/genética , Evolução Molecular , Genes de Plantas , Regiões Promotoras Genéticas , Ascomicetos/fisiologia , Sequência de Bases , Biologia Computacional , Cucurbitaceae/genética , Cucurbitaceae/microbiologia , Regulação da Expressão Gênica de Plantas , Motivos de Nucleotídeos/genética , Filogenia , Doenças das Plantas/microbiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Genética , Regulação para Cima/genética
19.
Front Microbiol ; 9: 1966, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30233507

RESUMO

The present study investigated the transcriptomic and metabolomic changes elicited in tomato plants (Solanum lycopersicum cv. Micro-Tom) following treatments with the biocontrol agent Trichoderma harzianum strain M10 or its purified secondary metabolite harzianic acid (HA), in the presence or the absence of the soil-borne pathogen Rhizoctonia solani. Transcriptomic analysis allowed the identification of differentially expressed genes (DEGs) that play a pivotal role in resistance to biotic stress. Overall, the results support the ability of T. harzianum M10 to activate defense responses in infected tomato plants. An induction of hormone-mediated signaling was observed, as shown by the up-regulation of genes involved in the ethylene and jasmonate (ET/JA) and salicylic acid (SA)-mediated signaling pathways. Further, the protective action of T. harzianum on the host was revealed by the over-expression of genes able to detoxify cells from reactive oxygen species (ROS). On the other hand, HA treatment also stimulated tomato response to the pathogen by inducing the expression of several genes involved in defense response (including protease inhibitors, resistance proteins like CC-NBS-LRR) and hormone interplay. The accumulation of steroidal glycoalkaloids in the plant after treatments with either T. harzianum or HA, as determined by metabolomic analysis, confirmed the complexity of the plant response to beneficial microbes, demonstrating that these microorganisms are also capable of activating the chemical defenses.

20.
Front Plant Sci ; 9: 441, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29719544

RESUMO

The advent of new sequencing technologies is revolutionizing the studies of ancient DNA (aDNA). In the last 30 years, DNA extracted from the ancient remains of several plant species has been explored in small-scale studies, contributing to understand the adaptation, and migration patterns of important crops. More recently, NGS technologies applied on aDNA have opened up new avenues of research, allowing investigation of the domestication process on the whole-genome scale. Genomic approaches based on genome-wide and targeted sequencing have been shown to provide important information on crop evolution and on the history of agriculture. Huge amounts of next-generation sequencing (NGS) data offer various solutions to overcome problems related to the origin of the material, such as degradation, fragmentation of polynucleotides, and external contamination. Recent advances made in several crop domestication studies have boosted interest in this research area. Remains of any nature are potential candidates for aDNA recovery and almost all the analyses that can be made on fresh DNA can also be performed on aDNA. The analysis performed on aDNA can shed light on many phylogenetic questions concerning evolution, domestication, and improvement of plant species. It is a powerful instrument to reconstruct patterns of crop adaptation and migration. Information gathered can also be used in many fields of modern agriculture such as classical breeding, genome editing, pest management, and product promotion. Whilst unlocking the hidden genome of ancient crops offers great potential, the onus is now on the research community to use such information to gain new insight into agriculture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...