Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
G3 (Bethesda) ; 2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34849835

RESUMO

AU-rich elements (AREs) are 3' UTR cis-regulatory elements that regulate the stability of mRNAs. Consensus ARE motifs have been determined, but little is known about how differences in 3' UTR sequences that conform to these motifs affect their function. Here we use functional annotation of sequences from 3' UTRs (fast-UTR), a massively parallel reporter assay (MPRA), to investigate the effects of 41,288 3' UTR sequence fragments from 4,653 transcripts on gene expression and mRNA stability in Jurkat and Beas2B cells. Our analyses demonstrate that the length of an ARE and its registration (the first and last nucleotides of the repeating ARE motif) have significant effects on gene expression and stability. Based on this finding, we propose improved ARE classification and concomitant methods to categorize and predict the effect of AREs on gene expression and stability. Finally, to investigate the advantages of our general experimental design we examine other motifs including constitutive decay elements (CDEs), where we show that the length of the CDE stem-loop has a significant impact on steady-state expression and mRNA stability. We conclude that fast-UTR, in conjunction with our analytical approach, can produce improved yet simple sequence-based rules for predicting the activity of human 3' UTRs.

2.
EClinicalMedicine ; 40: 101099, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34490415

RESUMO

Background: Since the beginning of the coronavirus disease 2019 (COVID-19) pandemic, there has been increasing urgency to identify pathophysiological characteristics leading to severe clinical course in patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Human leukocyte antigen alleles (HLA) have been suggested as potential genetic host factors that affect individual immune response to SARS-CoV-2. We sought to evaluate this hypothesis by conducting a multicenter study using HLA sequencing. Methods: We analyzed the association between COVID-19 severity and HLAs in 435 individuals from Germany (n = 135), Spain (n = 133), Switzerland (n = 20) and the United States (n = 147), who had been enrolled from March 2020 to August 2020. This study included patients older than 18 years, diagnosed with COVID-19 and representing the full spectrum of the disease. Finally, we tested our results by meta-analysing data from prior genome-wide association studies (GWAS). Findings: We describe a potential association of HLA-C*04:01 with severe clinical course of COVID-19. Carriers of HLA-C*04:01 had twice the risk of intubation when infected with SARS-CoV-2 (risk ratio 1.5 [95% CI 1.1-2.1], odds ratio 3.5 [95% CI 1.9-6.6], adjusted p-value = 0.0074). These findings are based on data from four countries and corroborated by independent results from GWAS. Our findings are biologically plausible, as HLA-C*04:01 has fewer predicted bindings sites for relevant SARS-CoV-2 peptides compared to other HLA alleles. Interpretation: HLA-C*04:01 carrier state is associated with severe clinical course in SARS-CoV-2. Our findings suggest that HLA class I alleles have a relevant role in immune defense against SARS-CoV-2. Funding: Funded by Roche Sequencing Solutions, Inc.

5.
Nat Commun ; 12(1): 5152, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34446707

RESUMO

The immunological features that distinguish COVID-19-associated acute respiratory distress syndrome (ARDS) from other causes of ARDS are incompletely understood. Here, we report the results of comparative lower respiratory tract transcriptional profiling of tracheal aspirate from 52 critically ill patients with ARDS from COVID-19 or from other etiologies, as well as controls without ARDS. In contrast to a "cytokine storm," we observe reduced proinflammatory gene expression in COVID-19 ARDS when compared to ARDS due to other causes. COVID-19 ARDS is characterized by a dysregulated host response with increased PTEN signaling and elevated expression of genes with non-canonical roles in inflammation and immunity. In silico analysis of gene expression identifies several candidate drugs that may modulate gene expression in COVID-19 ARDS, including dexamethasone and granulocyte colony stimulating factor. Compared to ARDS due to other types of viral pneumonia, COVID-19 is characterized by impaired interferon-stimulated gene (ISG) expression. The relationship between SARS-CoV-2 viral load and expression of ISGs is decoupled in patients with COVID-19 ARDS when compared to patients with mild COVID-19. In summary, assessment of host gene expression in the lower airways of patients reveals distinct immunological features of COVID-19 ARDS.


Assuntos
COVID-19/genética , RNA/genética , Síndrome do Desconforto Respiratório/genética , Traqueia/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/imunologia , COVID-19/virologia , Estudos de Casos e Controles , Estudos de Coortes , Estado Terminal , Citocinas/genética , Citocinas/imunologia , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , RNA/metabolismo , Síndrome do Desconforto Respiratório/imunologia , Síndrome do Desconforto Respiratório/virologia , SARS-CoV-2/fisiologia , Análise de Sequência de RNA
6.
bioRxiv ; 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34100012

RESUMO

SARS coronavirus-2 (SARS-CoV-2) is causing a global pandemic with large variation in COVID-19 disease spectrum. SARS-CoV-2 infection requires host receptor ACE2 on lung epithelium, but epithelial underpinnings of variation are largely unknown. We capitalized on comprehensive organoid assays to report remarkable variation in SARS-CoV-2 infection rates of lung organoids from different subjects. Tropism is highest for TUBA- and MUC5AC-positive organoid cells, but levels of TUBA-, MUC5A-, or ACE2-positive cells do not predict infection rate. We identify surface molecule Tetraspanin 8 (TSPAN8) as novel mediator of SARS-CoV-2 infection, which is not downregulated by this specific virus. TSPAN8 levels, prior to infection, strongly correlate with infection rate and TSPAN8-blocking antibodies diminish SARS-CoV-2 infection. We propose TSPAN8 as novel functional biomarker and potential therapeutic target for COVID-19.

7.
medRxiv ; 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33791731

RESUMO

Secondary bacterial infections, including ventilator-associated pneumonia (VAP), lead to worse clinical outcomes and increased mortality following viral respiratory infections. Critically ill patients with coronavirus disease 2019 (COVID-19) face an elevated risk of VAP, although susceptibility varies widely. Because mechanisms underlying VAP predisposition remained unknown, we assessed lower respiratory tract host immune responses and microbiome dynamics in 36 patients, including 28 COVID-19 patients, 15 of whom developed VAP, and eight critically ill controls. We employed a combination of tracheal aspirate bulk and single cell RNA sequencing (scRNA-seq). Two days before VAP onset, a lower respiratory transcriptional signature of bacterial infection was observed, characterized by increased expression of neutrophil degranulation, toll-like receptor and cytokine signaling pathways. When assessed at an earlier time point following endotracheal intubation, more than two weeks prior to VAP onset, we observed a striking early impairment in antibacterial innate and adaptive immune signaling that markedly differed from COVID-19 patients who did not develop VAP. scRNA-seq further demonstrated suppressed immune signaling across monocytes/macrophages, neutrophils and T cells. While viral load did not differ at an early post-intubation timepoint, impaired SARS-CoV-2 clearance and persistent interferon signaling characterized the patients who later developed VAP. Longitudinal metatranscriptomic analysis revealed disruption of lung microbiome community composition in patients who developed VAP, providing a connection between dysregulated immune signaling and outgrowth of opportunistic pathogens. Together, these findings demonstrate that COVID-19 patients who develop VAP have impaired antibacterial immune defense weeks before secondary infection onset. One sentence summary: COVID-19 patients with secondary bacterial pneumonia have impaired immune signaling and lung microbiome changes weeks before onset.

8.
JCI Insight ; 6(5)2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33682796

RESUMO

IL-13-induced goblet cell metaplasia contributes to airway remodeling and pathological mucus hypersecretion in asthma. miRNAs are potent modulators of cellular responses, but their role in mucus regulation is largely unexplored. We hypothesized that airway epithelial miRNAs play roles in IL-13-induced mucus regulation. miR-141 is highly expressed in human and mouse airway epithelium, is altered in bronchial brushings from asthmatic subjects at baseline, and is induced shortly after airway allergen exposure. We established a CRISPR/Cas9-based protocol to target miR-141 in primary human bronchial epithelial cells that were differentiated at air-liquid-interface, and goblet cell hyperplasia was induced by IL-13 stimulation. miR-141 disruption resulted in decreased goblet cell frequency, intracellular MUC5AC, and total secreted mucus. These effects correlated with a reduction in a goblet cell gene expression signature and enrichment of a basal cell gene expression signature defined by single cell RNA sequencing. Furthermore, intranasal administration of a sequence-specific mmu-miR-141-3p inhibitor in mice decreased Aspergillus-induced secreted mucus and mucus-producing cells in the lung and reduced airway hyperresponsiveness without affecting cellular inflammation. In conclusion, we have identified a miRNA that regulates pathological airway mucus production and is amenable to therapeutic manipulation through an inhaled route.

9.
bioRxiv ; 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33655249

RESUMO

Rationale: Asthma is associated with chronic changes in the airway epithelium, a key target of SARS-CoV-2. Many epithelial changes are driven by the type 2 cytokine IL-13, but the effects of IL-13 on SARS-CoV-2 infection are unknown. Objectives: We sought to discover how IL-13 and other cytokines affect expression of genes encoding SARS-CoV-2-associated host proteins in human bronchial epithelial cells (HBECs) and determine whether IL-13 stimulation alters susceptibility to SARS-CoV-2 infection. Methods: We used bulk and single cell RNA-seq to identify cytokine-induced changes in SARS-CoV-2-associated gene expression in HBECs. We related these to gene expression changes in airway epithelium from individuals with mild-moderate asthma and chronic obstructive pulmonary disease (COPD). We analyzed effects of IL-13 on SARS-CoV-2 infection of HBECs. Measurements and Main Results: Transcripts encoding 332 of 342 (97%) SARS-CoV-2-associated proteins were detected in HBECs (≥1 RPM in 50% samples). 41 (12%) of these mRNAs were regulated by IL-13 (>1.5-fold change, FDR < 0.05). Many IL-13-regulated SARS-CoV-2-associated genes were also altered in type 2 high asthma and COPD. IL-13 pretreatment reduced viral RNA recovered from SARS-CoV-2 infected cells and decreased dsRNA, a marker of viral replication, to below the limit of detection in our assay. Mucus also inhibited viral infection. Conclusions: IL-13 markedly reduces susceptibility of HBECs to SARS-CoV-2 infection through mechanisms that likely differ from those activated by type I interferons. Our findings may help explain reports of relatively low prevalence of asthma in patients diagnosed with COVID-19 and could lead to new strategies for reducing SARS-CoV-2 infection.

10.
bioRxiv ; 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33758859

RESUMO

Type I interferon (IFN-I) neutralizing autoantibodies have been found in some critical COVID-19 patients; however, their prevalence and longitudinal dynamics across the disease severity scale, and functional effects on circulating leukocytes remain unknown. Here, in 284 COVID-19 patients, we found IFN-I autoantibodies in 19% of critical, 6% of severe and none of the moderate cases. Longitudinal profiling of over 600,000 peripheral blood mononuclear cells using multiplexed single-cell epitope and transcriptome sequencing from 54 COVID-19 patients, 15 non-COVID-19 patients and 11 non-hospitalized healthy controls, revealed a lack of IFN-I stimulated gene (ISG-I) response in myeloid cells from critical cases, including those producing anti-IFN-I autoantibodies. Moreover, surface protein analysis showed an inverse correlation of the inhibitory receptor LAIR-1 with ISG-I expression response early in the disease course. This aberrant ISG-I response in critical patients with and without IFN-I autoantibodies, supports a unifying model for disease pathogenesis involving ISG-I suppression via convergent mechanisms.

11.
Nature ; 591(7848): 124-130, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33494096

RESUMO

Although infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has pleiotropic and systemic effects in some individuals1-3, many others experience milder symptoms. Here, to gain a more comprehensive understanding of the distinction between severe and mild phenotypes in the pathology of coronavirus disease 2019 (COVID-19) and its origins, we performed a whole-blood-preserving single-cell analysis protocol to integrate contributions from all major immune cell types of the blood-including neutrophils, monocytes, platelets, lymphocytes and the contents of the serum. Patients with mild COVID-19 exhibit a coordinated pattern of expression of interferon-stimulated genes (ISGs)3 across every cell population, whereas these ISG-expressing cells are systemically absent in patients with severe disease. Paradoxically, individuals with severe COVID-19 produce very high titres of anti-SARS-CoV-2 antibodies and have a lower viral load compared to individuals with mild disease. Examination of the serum from patients with severe COVID-19 shows that these patients uniquely produce antibodies that functionally block the production of the ISG-expressing cells associated with mild disease, by activating conserved signalling circuits that dampen cellular responses to interferons. Overzealous antibody responses pit the immune system against itself in many patients with COVID-19, and perhaps also in individuals with other viral infections. Our findings reveal potential targets for immunotherapies in patients with severe COVID-19 to re-engage viral defence.


Assuntos
Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/fisiopatologia , Interferons/antagonistas & inibidores , Interferons/imunologia , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Anticorpos Antivirais/sangue , Formação de Anticorpos , Sequência de Bases , COVID-19/sangue , COVID-19/virologia , Feminino , Humanos , Imunoglobulina G/imunologia , Interferons/metabolismo , Masculino , Neutrófilos/imunologia , Neutrófilos/patologia , Domínios Proteicos , Receptor de Interferon alfa e beta/antagonistas & inibidores , Receptor de Interferon alfa e beta/imunologia , Receptor de Interferon alfa e beta/metabolismo , Receptores de IgG/imunologia , Análise de Célula Única , Carga Viral/imunologia
12.
Am J Respir Crit Care Med ; 203(4): 424-436, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-32966749

RESUMO

Rationale: The 17q12-21.1 locus is one of the most highly replicated genetic associations with asthma. Individuals of African descent have lower linkage disequilibrium in this region, which could facilitate identifying causal variants.Objectives: To identify functional variants at 17q12-21.1 associated with early-onset asthma among African American individuals.Methods: We evaluated African American participants from SAPPHIRE (Study of Asthma Phenotypes and Pharmacogenomic Interactions by Race-Ethnicity) (n = 1,940), SAGE II (Study of African Americans, Asthma, Genes and Environment) (n = 885), and GCPD-A (Study of the Genetic Causes of Complex Pediatric Disorders-Asthma) (n = 2,805). Associations with asthma onset at ages under 5 years were meta-analyzed across cohorts. The lead signal was reevaluated considering haplotypes informed by genetic ancestry (i.e., African vs. European). Both an expression-quantitative trait locus analysis and a phenome-wide association study were performed on the lead variant.Measurements and Main Results: The meta-analyzed results from SAPPHIRE, SAGE II, and the GCPD-A identified rs11078928 as the top association for early-onset asthma. A haplotype analysis suggested that the asthma association partitioned most closely with the rs11078928 genotype. Genetic ancestry did not appear to influence the effect of this variant. In the expression-quantitative trait locus analysis, rs11078928 was related to alternative splicing of GSDMB (gasdermin-B) transcripts. The phenome-wide association study of rs11078928 suggested that this variant was predominantly associated with asthma and asthma-associated symptoms.Conclusions: A splice-acceptor polymorphism appears to be a causal variant for asthma at the 17q12-21.1 locus. This variant appears to have the same magnitude of effect in individuals of African and European descent.


Assuntos
Afro-Americanos/genética , Cromossomos Humanos Par 17 , Grupo com Ancestrais do Continente Europeu/genética , Estudos de Associação Genética , Predisposição Genética para Doença/genética , Adolescente , Adulto , Idade de Início , Asma/genética , Criança , Pré-Escolar , Mapeamento Cromossômico , Feminino , Variação Genética , Humanos , Lactente , Recém-Nascido , Desequilíbrio de Ligação , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Estados Unidos , Adulto Jovem
13.
Am J Respir Cell Mol Biol ; 64(3): 308-317, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33196316

RESUMO

The human airway epithelium is essential in homeostasis, and epithelial dysfunction contributes to chronic airway disease. Development of flow-cytometric methods to characterize subsets of airway epithelial cells will enable further dissection of airway epithelial biology. Leveraging single-cell RNA-sequencing data in combination with known cell type-specific markers, we developed panels of antibodies to characterize and isolate the major airway epithelial subsets (basal, ciliated, and secretory cells) from human bronchial epithelial-cell cultures. We also identified molecularly distinct subpopulations of secretory cells and demonstrated cell subset-specific expression of low-abundance transcripts and microRNAs that are challenging to analyze with current single-cell RNA-sequencing methods. These new tools will be valuable for analyzing and separating airway epithelial subsets and interrogating airway epithelial biology.


Assuntos
Separação Celular/métodos , Células Epiteliais/citologia , Citometria de Fluxo/métodos , Sistema Respiratório/citologia , Anticorpos/metabolismo , Biomarcadores/metabolismo , Humanos
14.
Res Sq ; 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33140041

RESUMO

While SARS-CoV-2 infection has pleiotropic and systemic effects in some patients, many others experience milder symptoms. We sought a holistic understanding of the severe/mild distinction in COVID-19 pathology, and its origins. We performed a wholeblood preserving single-cell analysis protocol to integrate contributions from all major cell types including neutrophils, monocytes, platelets, lymphocytes and the contents of serum. Patients with mild COVID-19 disease display a coordinated pattern of interferonstimulated gene (ISG) expression across every cell population and these cells are systemically absent in patients with severe disease. Severe COVID-19 patients also paradoxically produce very high anti-SARS-CoV-2 antibody titers and have lower viral load as compared to mild disease. Examination of the serum from severe patients demonstrates that they uniquely produce antibodies with multiple patterns of specificity against interferon-stimulated cells and that those antibodies functionally block the production of the mild disease-associated ISG-expressing cells. Overzealous and autodirected antibody responses pit the immune system against itself in many COVID-19 patients and this defines targets for immunotherapies to allow immune systems to provide viral defense.

15.
bioRxiv ; 2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33140050

RESUMO

While SARS-CoV-2 infection has pleiotropic and systemic effects in some patients, many others experience milder symptoms. We sought a holistic understanding of the severe/mild distinction in COVID-19 pathology, and its origins. We performed a whole-blood preserving single-cell analysis protocol to integrate contributions from all major cell types including neutrophils, monocytes, platelets, lymphocytes and the contents of serum. Patients with mild COVID-19 disease display a coordinated pattern of interferon-stimulated gene (ISG) expression across every cell population and these cells are systemically absent in patients with severe disease. Severe COVID-19 patients also paradoxically produce very high anti-SARS-CoV-2 antibody titers and have lower viral load as compared to mild disease. Examination of the serum from severe patients demonstrates that they uniquely produce antibodies with multiple patterns of specificity against interferon-stimulated cells and that those antibodies functionally block the production of the mild disease-associated ISG-expressing cells. Overzealous and auto-directed antibody responses pit the immune system against itself in many COVID-19 patients and this defines targets for immunotherapies to allow immune systems to provide viral defense. One Sentence Summary: In severe COVID-19 patients, the immune system fails to generate cells that define mild disease; antibodies in their serum actively prevents the successful production of those cells.

16.
Cell Stem Cell ; 27(6): 876-889.e12, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33232663

RESUMO

SARS-CoV-2 infection has led to a global health crisis, and yet our understanding of the disease and potential treatment options remains limited. The infection occurs through binding of the virus with angiotensin converting enzyme 2 (ACE2) on the cell membrane. Here, we established a screening strategy to identify drugs that reduce ACE2 levels in human embryonic stem cell (hESC)-derived cardiac cells and lung organoids. Target analysis of hit compounds revealed androgen signaling as a key modulator of ACE2 levels. Treatment with antiandrogenic drugs reduced ACE2 expression and protected hESC-derived lung organoids against SARS-CoV-2 infection. Finally, clinical data on COVID-19 patients demonstrated that prostate diseases, which are linked to elevated androgen, are significant risk factors and that genetic variants that increase androgen levels are associated with higher disease severity. These findings offer insights on the mechanism of disproportionate disease susceptibility in men and identify antiandrogenic drugs as candidate therapeutics for COVID-19.


Assuntos
Androgênios/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/metabolismo , Gravidade do Paciente , Receptores de Coronavírus/metabolismo , Transdução de Sinais , Adulto , Antagonistas de Androgênios , Androgênios/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Animais , Antivirais/uso terapêutico , COVID-19/complicações , COVID-19/tratamento farmacológico , Células Cultivadas , Chlorocebus aethiops , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Organoides/efeitos dos fármacos , Organoides/virologia , Fatores de Risco , Fatores Sexuais , Células Vero
17.
PLoS One ; 15(11): e0242364, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33237978

RESUMO

BACKGROUND: Mitochondria support critical cellular functions, such as energy production through oxidative phosphorylation, regulation of reactive oxygen species, apoptosis, and calcium homeostasis. OBJECTIVE: Given the heightened level of cellular activity in patients with asthma, we sought to determine whether mitochondrial DNA (mtDNA) copy number measured in peripheral blood differed between individuals with and without asthma. METHODS: Whole genome sequence data was generated as part of the Trans-Omics for Precision Medicine (TOPMed) Program on participants from the Study of Asthma Phenotypes and Pharmacogenomic Interactions by Race-ethnicity (SAPPHIRE) and the Study of African Americans, Asthma, Genes, & Environment II (SAGE II). We restricted our analysis to individuals who self-identified as African American (3,651 asthma cases and 1,344 controls). Mitochondrial copy number was estimated using the sequencing read depth ratio for the mitochondrial and nuclear genomes. Respiratory complex expression was assessed using RNA-sequencing. RESULTS: Average mitochondrial copy number was significantly higher among individuals with asthma when compared with controls (SAPPHIRE: 218.60 vs. 200.47, P<0.001; SAGE II: 235.99 vs. 223.07, P<0.001). Asthma status was significantly associated with mitochondrial copy number after accounting for potential explanatory variables, such as participant age, sex, leukocyte counts, and mitochondrial haplogroup. Despite the consistent relationship between asthma status and mitochondrial copy number, the latter was not associated with time-to-exacerbation or patient-reported asthma control. Mitochondrial respiratory complex gene expression was disproportionately lower in individuals with asthma when compared with individuals without asthma and other protein-encoding genes. CONCLUSIONS: We observed a robust association between asthma and higher mitochondrial copy number. Asthma having an effect on mitochondria function was also supported by lower respiratory complex gene expression in this group.


Assuntos
Afro-Americanos/genética , Asma/genética , Variações do Número de Cópias de DNA , DNA Mitocondrial/genética , Adulto , Asma/etnologia , Sequência de Bases , Estudos de Coortes , DNA Mitocondrial/sangue , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Feminino , Citometria de Fluxo , Humanos , Leucócitos/ultraestrutura , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais , RNA/genética , Sensibilidade e Especificidade , Pesquisa Médica Translacional , Sequenciamento Completo do Genoma , Adulto Jovem
19.
Am J Respir Cell Mol Biol ; 62(3): 373-381, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31596609

RESUMO

Primary human bronchial epithelial cell (HBEC) cultures are a useful model for studies of lung health and major airway diseases. However, mechanistic studies have been limited by our ability to selectively disrupt specific genes in these cells. Here we optimize methods for gene targeting in HBECs by direct delivery of single guide RNA (sgRNA) and rCas9 (recombinant Cas9) complexes by electroporation, without a requirement for plasmids, viruses, or antibiotic selection. Variations in the method of delivery, sgRNA and rCas9 concentrations, and sgRNA sequences all had effects on targeting efficiency, allowing for predictable control of the extent of gene targeting and for near-complete disruption of gene expression. To demonstrate the value of this system, we targeted SPDEF, which encodes a transcription factor previously shown to be essential for the differentiation of MUC5AC-producing goblet cells in mouse models of asthma. Targeting SPDEF led to proportional decreases in MUC5AC expression in HBECs stimulated with IL-13, a central mediator of allergic asthma. Near-complete targeting of SPDEF abolished IL-13-induced MUC5AC expression and goblet cell differentiation. In addition, targeting of SPDEF prevented IL-13-induced impairment of mucociliary clearance, which is likely to be an important contributor to airway obstruction, morbidity, and mortality in asthma. We conclude that direct delivery of sgRNA and rCas9 complexes allows for predictable and efficient gene targeting and enables mechanistic studies of disease-relevant pathways in primary HBECs.


Assuntos
Células Epiteliais/efeitos dos fármacos , Marcação de Genes/métodos , Interleucina-13/fisiologia , Depuração Mucociliar/fisiologia , Proteínas Proto-Oncogênicas c-ets/fisiologia , Ribonucleoproteínas/genética , Brônquios/citologia , Sistemas CRISPR-Cas , Células Cultivadas , Regulação para Baixo , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Células Caliciformes/metabolismo , Humanos , Metaplasia , Mucina-5AC/biossíntese , Mucina-5AC/genética , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-ets/deficiência , Proteínas Proto-Oncogênicas c-ets/genética , RNA Guia/genética , Ribonucleoproteínas/administração & dosagem , Transcriptoma
20.
Cell Rep ; 29(12): 4212-4222.e5, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31851944

RESUMO

Given the increasing interest in their use as disease biomarkers, the establishment of reproducible, accurate, sensitive, and specific platforms for microRNA (miRNA) quantification in biofluids is of high priority. We compare four platforms for these characteristics: small RNA sequencing (RNA-seq), FirePlex, EdgeSeq, and nCounter. For a pool of synthetic miRNAs, coefficients of variation for technical replicates are lower for EdgeSeq (6.9%) and RNA-seq (8.2%) than for FirePlex (22.4%); nCounter replicates are not performed. Receiver operating characteristic analysis for distinguishing present versus absent miRNAs shows small RNA-seq (area under curve 0.99) is superior to EdgeSeq (0.97), nCounter (0.94), and FirePlex (0.81). Expected differences in expression of placenta-associated miRNAs in plasma from pregnant and non-pregnant women are observed with RNA-seq and EdgeSeq, but not FirePlex or nCounter. These results indicate that differences in performance among miRNA profiling platforms impact ability to detect biological differences among samples and thus their relative utility for research and clinical use.


Assuntos
Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , MicroRNAs/sangue , MicroRNAs/genética , Placenta/metabolismo , Análise de Sequência de RNA/métodos , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Gravidez , Curva ROC , Reprodutibilidade dos Testes , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...