Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bipolar Disord ; 19(4): 259-272, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28574156

RESUMO

OBJECTIVES: Individualized treatment for bipolar disorder based on neuroimaging treatment targets remains elusive. To address this shortcoming, we developed a linguistic machine learning system based on a cascading genetic fuzzy tree (GFT) design called the LITHium Intelligent Agent (LITHIA). Using multiple objectively defined functional magnetic resonance imaging (fMRI) and proton magnetic resonance spectroscopy (1 H-MRS) inputs, we tested whether LITHIA could accurately predict the lithium response in participants with first-episode bipolar mania. METHODS: We identified 20 subjects with first-episode bipolar mania who received an adequate trial of lithium over 8 weeks and both fMRI and 1 H-MRS scans at baseline pre-treatment. We trained LITHIA using 18 1 H-MRS and 90 fMRI inputs over four training runs to classify treatment response and predict symptom reductions. Each training run contained a randomly selected 80% of the total sample and was followed by a 20% validation run. Over a different randomly selected distribution of the sample, we then compared LITHIA to eight common classification methods. RESULTS: LITHIA demonstrated nearly perfect classification accuracy and was able to predict post-treatment symptom reductions at 8 weeks with at least 88% accuracy in training and 80% accuracy in validation. Moreover, LITHIA exceeded the predictive capacity of the eight comparator methods and showed little tendency towards overfitting. CONCLUSIONS: The results provided proof-of-concept that a novel GFT is capable of providing control to a multidimensional bioinformatics problem-namely, prediction of the lithium response-in a pilot data set. Future work on this, and similar machine learning systems, could help assign psychiatric treatments more efficiently, thereby optimizing outcomes and limiting unnecessary treatment.


Assuntos
Sintomas Comportamentais , Transtorno Bipolar , Resistência a Medicamentos , Compostos de Lítio , Imagem por Ressonância Magnética/métodos , Espectroscopia de Prótons por Ressonância Magnética/métodos , Adolescente , Adulto , Antimaníacos/administração & dosagem , Antimaníacos/efeitos adversos , Inteligência Artificial , Sintomas Comportamentais/diagnóstico , Sintomas Comportamentais/tratamento farmacológico , Transtorno Bipolar/diagnóstico , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/psicologia , Manual Diagnóstico e Estatístico de Transtornos Mentais , Monitoramento de Medicamentos/métodos , Feminino , Lógica Fuzzy , Humanos , Compostos de Lítio/administração & dosagem , Compostos de Lítio/efeitos adversos , Masculino , Imagem Multimodal/métodos , Projetos Piloto , Valor Preditivo dos Testes , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA