Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Inorg Chem ; 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32640163

RESUMO

High pressure X-ray diffraction, Raman scattering, and electrical measurements, together with theoretical calculations, which include the analysis of the topological electron density and electronic localization function, evidence the presence of an isostructural phase transition around 2 GPa, a Fermi resonance around 3.5 GPa, and a pressure-induced decomposition of SnSb2Te4 into the high-pressure phases of its parent binary compounds (α-Sb2Te3 and SnTe) above 7 GPa. The internal polyhedral compressibility, the behavior of the Raman-active modes, the electrical behavior, and the nature of its different bonds under compression have been discussed and compared with their parent binary compounds and with related ternary materials. In this context, the Raman spectrum of SnSb2Te4 exhibits vibrational modes that are associated but forbidden in rocksalt-type SnTe; thus showing a novel way to experimentally observe the forbidden vibrational modes of some compounds. Here, some of the bonds are identified with metavalent bonding, which were already observed in their parent binary compounds. The behavior of SnSb2Te4 is framed within the extended orbital radii map of BA2Te4 compounds, so our results pave the way to understand the pressure behavior and stability ranges of other "natural van der Waals" compounds with similar stoichiometry.

2.
Inorg Chem ; 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32302127

RESUMO

We have studied the high-pressure behavior of FeVO4 by means of single-crystal X-ray diffraction (XRD) and density functional theory (DFT) calculations. We have found that the structural sequence of FeVO4 is different from that previously assumed. In particular, we have discovered a new high-pressure phase at 2.11(4) GPa (FeVO4-I'), which was not detected by previous powder XRD studies. We have determined that FeVO4, under compression (at room temperature), first transforms at 2.11(4) GPa from the ambient-pressure triclinic structure (FeVO4-I) to a second previously unknown triclinic structure (FeVO4-I'), which experiences a subsequent phase transition at 4.80(4) GPa to a monoclinic structure (FeVO4-II'), which was also previously detected in powder XRD experiments. Single-crystal XRD has enabled these novel findings as well as an accurate determination of the crystal structure of FeVO4 polymorphs under high-pressure conditions. The crystal structure of all polymorphs has been accurately solved at all measured pressures. The pressure dependence of the unit-cell parameters and polyhedral coordination have been obtained and are discussed. The room-temperature equation of state and the principal axes of the isothermal compressibility tensor of FeVO4-I and FeVO4-I' have also been determined. The structural phase transition observed here between these two triclinic structures at 2.11(4) GPa implies abrupt coordination polyhedra modifications, including coordination number changes. DFT calculations support the conclusions extracted from our experiments.

3.
Inorg Chem ; 2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32191461

RESUMO

We present a structural and optical characterization of magnetoelastic zircon-type TmVO4 at ambient pressure and under high pressure. The properties under high pressure have been determined experimentally under hydrostatic conditions and theoretically using density functional theory. By powder X-ray diffraction we show that TmVO4 undergoes a first-order irreversible phase transition to a scheelite structure above 6 GPa. We have also determined (from powder and single-crystal X-ray diffraction) the bulk moduli of both phases and found that their compressibilities are anisotropic. The band gap of TmVO4 is found to be Eg = 3.7(2) eV. Under compression the band gap opens linearly, until it undergoes a huge collapse following the structural phase transition (ΔEg = 1.15 eV). Ab initio structural and free energy calculations support our findings. Moreover, calculations of the band structure and density of states reveal that for both zircon and scheelite TmVO4 the band gap is entirely determined by the V 3d and O 2p states of the VO43- ion. The behavior of the band gap can thus be understood entirely in terms of the structural modifications of the VO4 units under compression. Additionally, we have calculated the evolution of the infrared and Raman phonons of both phases upon compression. The presence of soft modes is related to the dynamic instability of the low-pressure phase and to the phase transition.

4.
Inorg Chem ; 59(1): 287-307, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31876414

RESUMO

SbPO4 is a complex monoclinic layered material characterized by a strong activity of the nonbonding lone electron pair (LEP) of Sb. The strong cation LEP leads to the formation of layers piled up along the a axis and linked by weak Sb-O electrostatic interactions. In fact, Sb has 4-fold coordination with O similarly to what occurs with the P-O coordination, despite the large difference in ionic radii and electronegativity between both elements. Here we report a joint experimental and theoretical study of the structural and vibrational properties of SbPO4 at high pressure. We show that SbPO4 is not only one of the most compressible phosphates but also one of the most compressible compounds of the ABO4 family. Moreover, it has a considerable anisotropic compression behavior, with the largest compression occurring along a direction close to the a axis and governed by the compression of the LEP and the weak interlayer Sb-O bonds. The strong compression along the a axis leads to a subtle modification of the monoclinic crystal structure above 3 GPa, leading from a 2D to a 3D material. Moreover, the onset of a reversible pressure-induced phase transition is observed above 9 GPa, which is completed above 20 GPa. We propose that the high-pressure phase is a triclinic distortion of the original monoclinic phase. The understanding of the compression mechanism of SbPO4 can aid to improve the ion intercalation and catalytic properties of this layered compound.

5.
Adv Sci (Weinh) ; 6(19): 1901132, 2019 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-31592421

RESUMO

Inverse photoconductivity (IPC) is a unique photoresponse behavior that exists in few photoconductors in which electrical conductivity decreases with irradiation, and has great potential applications in the development of photonic devices and nonvolatile memories with low power consumption. However, it is still challenging to design and achieve IPC in most materials of interest. In this study, pressure-driven photoconductivity is investigated in n-type WO3 nanocuboids functionalized with p-type CuO nanoparticles under visible illumination and an interesting pressure-induced IPC accompanying a structural phase transition is found. Native and structural distortion induced oxygen vacancies assist the charge carrier trapping and favor the persistent positive photoconductivity beyond 6.4 GPa. The change in photoconductivity is mainly related to a phase transition and the associated changes in the bandgap, the trapping of charge carriers, the WO6 octahedral distortion, and the electron-hole pair recombination process. A unique reversible transition from positive to inverse photoconductivity is observed during compression and decompression. The origin of the IPC is intimately connected to the depletion of the conduction channels by electron trapping and the chromic property of WO3. This synergistic rationale may afford a simple and powerful method to improve the optomechanical performance of any hybrid material.

6.
Sci Rep ; 9(1): 14459, 2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-31595017

RESUMO

The high-pressure and high-temperature structural and chemical stability of ruthenium has been investigated via synchrotron X-ray diffraction using a resistively heated diamond anvil cell. In the present experiment, ruthenium remains stable in the hcp phase up to 150 GPa and 960 K. The thermal equation of state has been determined based upon the data collected following four different isotherms. A quasi-hydrostatic equation of state at ambient temperature has also been characterized up to 150 GPa. The measured equation of state and structural parameters have been compared to the results of ab initio simulations performed with several exchange-correlation functionals. The agreement between theory and experiments is generally quite good. Phonon calculations were also carried out to show that hcp ruthenium is not only structurally but also dynamically stable up to extreme pressures. These calculations also allow the pressure dependence of the Raman-active E2g mode and the silent B1g mode of Ru to be determined.

7.
Sci Rep ; 9(1): 13034, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31506567

RESUMO

In this work, the melting line of platinum has been characterized both experimentally, using synchrotron X-ray diffraction in laser-heated diamond-anvil cells, and theoretically, using ab initio simulations. In the investigated pressure and temperature range (pressure between 10 GPa and 110 GPa and temperature between 300 K and 4800 K), only the face-centered cubic phase of platinum has been observed. The melting points obtained with the two techniques are in good agreement. Furthermore, the obtained results agree and considerably extend the melting line previously obtained in large-volume devices and in one laser-heated diamond-anvil cells experiment, in which the speckle method was used as melting detection technique. The divergence between previous laser-heating experiments is resolved in favor of those experiments reporting the higher melting slope.

8.
J Phys Chem Lett ; 10(16): 4744-4751, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31381341

RESUMO

We have studied by means of X-ray diffraction and Raman spectroscopy the high-pressure behavior of PbCrO4 nanorods. We have found that these nanorods follow a distinctive structural sequence that differs from that of bulk PbCrO4. In particular, a phase transition from a monoclinic monazite-type PbCrO4 to a novel monoclinic AgMnO4-type polymorph has been discovered at 8.5 GPa. The crystal structure, Raman-active phonons, and compressibility of this novel high-pressure phase are reported for the first time. The experimental findings are supported by ab initio calculations that provide information not only on structural and vibrational properties of AgMnO4-type PbCrO4 but also on the electronic properties. The discovered phase transition triggers a band gap collapse and a subsequent metallization at 44.2 GPa, which has not been observed in bulk PbCrO4. This suggests that nanoengineering can be a useful strategy to drive metallization under compression.

9.
Inorg Chem ; 58(16): 10665-10670, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31389700

RESUMO

The effects of pressure on the crystal structure of aurophilic tetragonal gold iodide have been studied by means of powder X-ray diffraction up to 13.5 GPa. We found evidence of the onset of a phase transition at 1.5 GPa that is more significant from 3.8 GPa. The low- and high-pressure phases coexist up to 10.7 GPa. Beyond 10.7 GPa, an irreversible process of amorphization takes place. We determined the axial and bulk compressibility of the ambient-pressure tetragonal phase of gold iodide up to 3.3 GPa. This is extremely compressible with a bulk modulus of 18.1(8) GPa, being as soft as a rare gas, molecular solids, or organometallic compounds. Moreover, its response to pressure is anisotropic.

10.
Inorg Chem ; 58(9): 5966-5979, 2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-30986038

RESUMO

We have investigated the high-pressure behavior of PbCrO4. In particular, we have probed the existence of structural transitions under high pressure (at 4.5 GPa) by single-crystal X-ray diffraction and density functional theory calculations. The structural sequence of PbCrO4 is different than previously determined. Specifically, we have established that PbCrO4, under pressure, displays a monoclinic-tetragonal phase transition, with no intermediate phases between the low-pressure monoclinic monazite structure (space group P21/ n) and the high-pressure tetragonal structure. The crystal structure of the high-pressure polymorph is, for the first time, undoubtedly determined to a tetragonal scheelite-type structure (space group I41/ a) with unit-cell parameters a = 5.1102(3) Å and c = 12.213(3) Å. These findings have been used for a reinterpretation of previously published Raman and optical-absorption results. Information of calculated infrared-active phonons will be also provided. In addition, the pressure dependence of the unit-cell parameters, atomic positions, bond distances, and polyhedral coordination are discussed. The softest and stiffest direction of compression for monazite-type PbCrO4 are also reported. Finally, the theoretical pressure dependence of infrared-active modes is given, for the first time, for both polymorphs.

11.
Inorg Chem ; 58(7): 4480-4490, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30864787

RESUMO

We present a study of the pressure dependence of the structure of partially hydrated hexagonal CePO4 up to 21 GPa using synchrotron powder X-ray diffraction. At a pressure of 10 GPa, a second-order structural phase transition is observed, associated with a novel polymorph. The previously unknown high-pressure phase has a monoclinic structure with a similar atomic arrangement as the low-pressure phase, but with reduced symmetry, belonging to space group C2. Group-subgroup relations hold for the space symmetry groups of both structures. There is no detectable volume discontinuity at the phase transition. Here we provide structural information on the new phase and determine the axial compressibility and bulk modulus for both phases. They are found to have an anisotropic behavior and to be much more compressible than the denser monazite-like polymorph of CePO4. In addition, the isothermal compressibility tensor for the high-pressure structure is reported at 10 GPa and the direction of maximum compressibility described. Finally, the possible role of water and the pressure medium in the high-pressure behavior is discussed. The results are compared with those from other rare-earth orthophosphates.

12.
Inorg Chem ; 57(21): 14005-14012, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30370764

RESUMO

The zircon to scheelite phase boundary of ErVO4 has been studied by high-pressure and high-temperature powder and single-crystal X-ray diffraction. This study has allowed us to delimit the best synthesis conditions of its scheelite-type phase, determine the ambient-temperature equation of state of the zircon and scheelite-type structures, and obtain the thermal equation of state of the zircon-type polymorph. The results obtained with powder samples indicate that zircon-type ErVO4 transforms to scheelite at 8.2 GPa and 293 K and at 7.5 GPa and 693 K. The analyses yield bulk moduli K0 of 158(13) GPa for the zircon phase and 158(17) GPa for the scheelite phase, with a temperature derivative of d K0/d T = -[3.8(2)] × 10-3 GPa K-1 and a volumetric thermal expansion of α0 = [0.9(2)] × 10-5 K-1 for the zircon phase according to the Berman model. The results are compared with those of other zircon-type vanadates, raising the need for careful experiments with highly crystalline scheelite to obtain reliable bulk moduli of this phase. Finally, we have performed single-crystal diffraction experiments from 110 to 395 K, and the obtained volumetric thermal expansion (α0) for zircon-type ErVO4 in the 300-395 K range is [1.4(2)] × 10-5 K-1, in good agreement with previous data and with our experimental value given from the thermal equation of state fit within the limits of uncertainty.

13.
Inorg Chem ; 57(16): 10265-10276, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-30052035

RESUMO

In this work, we present an experimental and theoretical study of the effects of high pressure and high temperature on the structural properties of olivine-type LiNiPO4. This compound is part of an interesting class of materials primarily studied for their potential use as electrodes in lithium-ion batteries. We found that the original olivine structure (α-phase) is stable up to ∼40 GPa. Above this pressure, the onset of a new phase is observed, as put in evidence by the X-ray diffraction (XRD) experiments. The structural refinement shows that the new phase (known as ß-phase) belongs to space group Cmcm. At room temperature, the two phases coexist at least up to 50 GPa. A complete conversion to the ß-phase was only obtained at high-pressure and high-temperature conditions (973 K, 6.5 GPa), as confirmed by both XRD and Raman spectroscopy. Ab initio calculations support the same structural sequence. The need of high-temperature conditions to obtain the complete transformation of the α-phase into the ß-phase is indicative of the existence of a kinetic barrier for the phase transition. Here, we report the evolution of crystallographic parameters as a function of pressure for both phases, comparing them with the theoretical predictions. We also discuss the influence of pressure on the polyhedral units and report room-temperature equations of state. The dependence of the Raman phonons of both phases on pressure is also studied, assigning to each phonon its respective symmetry by comparison with the results of the ab initio simulations.

14.
Dalton Trans ; 47(31): 10654-10659, 2018 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-29850707

RESUMO

We investigate the structural response of a dense peptide metal-organic framework using in situ powder and single-crystal X-ray diffraction under high-pressures. Crystals of Zn(GlyTyr)2 show a reversible compression by 13% in volume at 4 GPa that is facilitated by the ability of the peptidic linker to act as a flexible string for a cooperative response of the structure to strain. This structural transformation is controlled by changes to the conformation of the peptide, which enables a bond rearrangement in the coordination sphere of the metal and changes to the strength and directionality of the supramolecular interactions specific to the side chain groups in the dipeptide sequence. Compared to other structural transformations in Zn(ii) peptide MOFs, this behaviour is not affected by host/guest interactions and relies exclusively on the conformational flexibility of the peptide and its side chain chemistry.

15.
Inorg Chem ; 57(13): 7550-7557, 2018 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-29927586

RESUMO

We studied the electronic and vibrational properties of monazite-type SrCrO4 under compression. The study extended the pressure range of previous studies from 26 to 58 GPa. The existence of two previously reported phase transitions was confirmed at 9 and 14 GPa, and two new phase transitions were found at 35 and 48 GPa. These transitions involve several changes in the vibrational and transport properties with the new high-pressure phases having a conductivity lower than that of the previously known phases. No evidence of chemical decomposition or metallization of SrCrO4 was detected. A tentative explanation for the reported observations is discussed.

16.
Inorg Chem ; 57(14): 8241-8252, 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-29944355

RESUMO

α(R)-In2Se3 has been experimentally and theoretically studied under compression at room temperature by means of X-ray diffraction and Raman scattering measurements as well as by ab initio total-energy and lattice-dynamics calculations. Our study has confirmed the α ( R3 m) → ß' ( C2/ m) → ß ( R3̅ m) sequence of pressure-induced phase transitions and has allowed us to understand the mechanism of the monoclinic C2/ m to rhombohedral R3̅ m phase transition. The monoclinic C2/ m phase enhances its symmetry gradually until a complete transformation to the rhombohedral R3̅ m structure is attained above 10-12 GPa. The second-order character of this transition is the reason for the discordance in previous measurements. The comparison of Raman measurements and lattice-dynamics calculations has allowed us to tentatively assign most of the Raman-active modes of the three phases. The comparison of experimental results and simulations has helped to distinguish between the different phases of In2Se3 and resolve current controversies.

17.
Inorg Chem ; 57(13): 7860-7876, 2018 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-29897237

RESUMO

The high-pressure behavior of the crystalline structure FeVO4 has been studied by means of X-ray diffraction using a diamond-anvil cell and first-principles calculations. The experiments were carried out up to a pressure of 12.3 GPa, until now the highest pressure reached to study an FeVO4 compound. High-pressure X-ray diffraction measurements show that the triclinic P1̅ (FeVO4-I) phase remains stable up to ≈3 GPa; then a first-order phase transition to a new monoclinic polymorph of FeVO4 (FeVO4-II') with space group C2/ m is observed, having an α-MnMoO4-type structure. A second first-order phase transition is observed around 5 GPa toward the monoclinic ( P2/ c) wolframite-type FeVO4-IV structure, which is stable up to 12.3 GPa in coexistence with FeVO4-II'. The unit cell volume reductions for the first and second phase transitions are Δ V = -8.5% and -13.1%. It was observed that phase transitions are irreversible and both high-pressure phases remain stable once the pressure is released. Calculations were performed at the level of the generalized gradient approximation plus Hubbard correction (GGA+ U) and with the hybrid Heyd-Scuseria-Ernzerhof (HSE06) exchange-correlation functional in order to have a good representation of the pressure behavior of FeVO4. We found that theoretical results follow the pressure evolution of structural parameters of FeVO4, in good agreement with the experimental results. Also, we analyze FeVO4-II (orthorhombic Cmcm, CrVO4-type structure) and -III (orthorhombic Pbcn, α-PbO2-type structure) phases and compare our results with the literature. Going beyond the experimental results, we study some possible post-wolframite phases reported for other compounds and we found a phase transition for FeVO4-IV to raspite (monoclinic P21/ c) type structure (FeVO4-V) at 36 GPa (Δ V = -8.1%) and a further phase transition to the AgMnO4-type (monoclinic P21/ c) structure (FeVO4-VI) at 66.5 GPa (Δ V = -3.7%), similar to the phase transition sequence reported for InVO4.

18.
Artigo em Inglês | MEDLINE | ID: mdl-29243670

RESUMO

Monazite-type BiPO4, LaPO4, CePO4, and PrPO4 have been studied under high pressure by ab initio simulations and Raman spectroscopy measurements in the pressure range of stability of the monazite structure. A good agreement between experimental and theoretical Raman-active mode frequencies and pressure coefficients has been found which has allowed us to discuss the nature of the Raman-active modes. Besides, calculations have provided us information on how the crystal structure is modified by pressure. This information has allowed us to determine the equation of state and the isothermal compressibility tensor of the four studied compounds. In addition, the information obtained on the polyhedral compressibility has been used to explain the anisotropic axial compressibility and the bulk compressibility of monazite phosphates. Finally, we have carried out a systematic discussion on the high-pressure behavior of the four studied phosphates in comparison to results of previous studies.

19.
Nat Commun ; 8(1): 1851, 2017 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-29184055

RESUMO

Current interest in barocaloric effects has been stimulated by the discovery that these pressure-driven thermal changes can be giant near ferroic phase transitions in materials that display magnetic or electrical order. Here we demonstrate giant inverse barocaloric effects in the solid electrolyte AgI, near its superionic phase transition at ~420 K. Over a wide range of temperatures, hydrostatic pressure changes of 2.5 kbar yield large and reversible barocaloric effects, resulting in large values of refrigerant capacity. Moreover, the peak values of isothermal entropy change (60 J K-1 kg-1 or 0.34 J K-1 cm-3) and adiabatic temperature changes (18 K), which we identify for a starting temperature of 390 K, exceed all values previously recorded for barocaloric materials. Our work should therefore inspire the study of barocaloric effects in a wide range of solid electrolytes, as well as the parallel development of cooling devices.

20.
Nat Commun ; 8(1): 963, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-29042557

RESUMO

Solid-state cooling is an energy-efficient and scalable refrigeration technology that exploits the adiabatic variation of a crystalline order parameter under an external field (electric, magnetic, or mechanic). The mechanocaloric effect bears one of the greatest cooling potentials in terms of energy efficiency owing to its large available latent heat. Here we show that giant mechanocaloric effects occur in thin films of well-known families of fast-ion conductors, namely Li-rich (Li3OCl) and type-I (AgI), an abundant class of materials that routinely are employed in electrochemistry cells. Our simulations reveal that at room temperature AgI undergoes an adiabatic temperature shift of 38 K under a biaxial stress of 1 GPa. Likewise, Li3OCl displays a cooling capacity of 9 K under similar mechanical conditions although at a considerably higher temperature. We also show that ionic vacancies have a detrimental effect on the cooling performance of superionic thin films. Our findings should motivate experimental mechanocaloric searches in a wide variety of already known superionic materials.Mechanocaloric effects are a promising path towards solid-state cooling. Here the authors perform atomistic simulations on the well-known fast-ion conductor silver iodide and computationally predict a sizeable mechanocaloric effect under biaxial strain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA