Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
3.
Sci Rep ; 12(1): 3795, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264636

RESUMO

The present research has estimated the additive and dominance genetic variances of genic and intergenic segments for average daily gain (ADG), backfat thickness (BFT) and pH of the semimembranosus dorsi muscle (PHS). Further, the predictive performance using additive and additive dominance models in a purebred Piétrain (PB) and a crossbred (Piétrain × Large White, CB) pig population was assessed. All genomic regions contributed equally to the additive and dominance genetic variations and lead to the same predictive ability that did not improve with the inclusion of dominance genetic effect and inbreeding in the models. Using all SNPs available, additive genotypic correlations between PB and CB performances for the three traits were high and positive (> 0.83) and dominance genotypic correlation was very inaccurate. Estimates of dominance genotypic correlations between all pairs of traits in both populations were imprecise but positive for ADG-BFT in CB and BFT-PHS in PB and CB with a high probability (> 0.98). Additive and dominance genotypic correlations between BFT and PHS were of different sign in both populations, which could indicate that genes contributing to the additive genetic progress in both traits would have an antagonistic effect when used for exploiting dominance effects in planned matings.


Assuntos
Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Animais , Genoma , Genótipo , Fenótipo , Suínos/genética
4.
BMC Res Notes ; 15(1): 121, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35351186

RESUMO

OBJECTIVE: How do birds navigate their way? It is one of the interesting question about homing pigeons, however the genetic of navigation has reminded as a puzzle. Optic lobe, olfactory bulb, hippocampus and cere were collected for RNA sampling. The generated RNA-seq represent RNA resequencing data for racing homer (homing) pigeon and other rock pigeon breeds. The obtained data set can provide new insight about hippocampus role and GSR contribution to pigeon magnetoreception. DATA DESCRIPTION: To investigate the navigation ability of rock pigeon breeds, 60 whole transcriptome sequence data sets related to homing pigeon, Shiraz tumblers, feral pigeons and Persian high flyers were obtained. RNA extraction was performed from three brain regions (optic lobe, olfactory bulb, hippocampus) and cere. Paired-end 150 bp short reads (Library size 350 bp) were sequenced by Illumina Hiseq 2000. In this way, about 342.1 Gbp and 130.3 Gb data were provided. The whole transcriptome data sets have been deposited at the NCBI SRA database (PRJNA532674). The submitted data set may play critical role to describe the mechanism of navigation ability of rock pigeon breeds.


Assuntos
Columbidae , Transcriptoma , Animais , Encéfalo , Columbidae/genética , Hipocampo , Análise de Sequência de DNA , Transcriptoma/genética
5.
BMC Genomics ; 23(1): 224, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35317755

RESUMO

BACKGROUND: Understanding how evolutionary forces relating to climate have shaped the patterns of genetic variation within and between species is a fundamental pursuit in biology. Iranian indigenous chickens have evolved genetic adaptations to their local environmental conditions, such as hot and arid regions. In the present study, we provide a population genome landscape of genetic variations in 72 chickens representing nine Iranian indigenous ecotypes (Creeper, Isfahan, Lari, Marand, Mashhad, Naked neck, Sari, Shiraz and Yazd) and two commercial lines (White Leghorn and Arian). We further performed comparative population genomics to evaluate the genetic basis underlying variation in the adaptation to hot climate and immune response in indigenous chicken ecotypes. To detect genomic signatures of adaptation, we applied nucleotide diversity (θπ) and FST statistical measurements, and further analyzed the results to find genomic regions under selection for hot adaptation and immune response-related traits. RESULTS: By generating whole-genome data, we assessed the relationship between the genetic diversity of indigenous chicken ecotypes and their genetic distances to two different commercial lines. The results of genetic structure analysis revealed clustering of indigenous chickens in agreement with their geographic origin. Among all studied chicken groups, the highest level of linkage disequilibrium (LD) (~ 0.70) was observed in White Leghorn group at marker pairs distance of 1 Kb. The results from admixture analysis demonstrated evidence of shared ancestry between Arian individuals and indigenous chickens, especially those from the north of the country. Our search for potential genomic regions under selection in indigenous chicken ecotypes revealed several immune response and heat shock protein-related genes, such as HSP70, HSPA9, HSPH1, HSP90AB1 and PLCB4 that have been previously unknown to be involved in environmental-adaptive traits. In addition, we found some other candidate loci on different chromosomes probably related with hot adaptation and immune response-related traits. CONCLUSIONS: The work provides crucial insights into the structural variation in the genome of Iranian indigenous chicken ecotypes, which up to now has not been genetically investigated. Several genes were identified as candidates for drought, heat tolerance, immune response and other phenotypic traits. These candidate genes may be helpful targets for understanding of the molecular basis of adaptation to hot environmental climate and as such they should be used in chicken breeding programs to select more efficient breeds for desert climate.


Assuntos
Galinhas , Termotolerância , Animais , Galinhas/genética , Variação Genética , Imunidade/genética , Irã (Geográfico) , Polimorfismo de Nucleotídeo Único
6.
Vet Med Sci ; 8(3): 1197-1204, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35014209

RESUMO

BACKGROUND: Artificial and natural selection for important economic traits and genetic adaptation of the populations to specific environments have led to the changes on the sheep genome. Recent advances in genome sequencing methods have made it possible to use comparative genomics tools to identify genes under selection for traits of economic interest in domestic animals. OBJECTIVES: In this study, we compared the genomes of Assaf and Awassi sheep breeds with those of the Cambridge, Romanov and British du cher sheep breeds to explore positive selection signatures for milk traits using nucleotide diversity (Pi) and FST statistical methods. METHODS: Genome sequences from fourteen sheep with a mean sequence depth of 9.32X per sample were analysed, and a total of 23 million single nucleotide polymorphisms (SNPs) were called and applied for this study. Genomic clustering of breeds was identified using ADMIXTURE software. The FST and Pi values for each SNP were computed between population A (Assaf and Awassi) and population B (Cambridge, British du cher, and Romanov). RESULTS: The results of the PCA grouped two classes for these five dairy sheep breeds. The selection signatures analysis displayed 735 and 515 genes from FST and nucleotide diversity (Pi) statistical methods, respectively. Among all these, 12 genes were shared between the two approaches. The most conspicuous genes were related to milk traits, including ST3GAL1 (the synthesis of oligosacáridos), CSN1S1 (milk protein), CSN2 (milk protein), OSBPL8 (fatty acid traits), SLC35A3 (milk fat and protein percentage), VPS13B (total milk production, fat yield, and protein yield), DPY19L1 (peak yield), CCDC152 (lactation persistency and somatic cell count), NT5DC1 (lactation persistency), P4HTM (test day protein), CYTH4 (FAT Production) and METRNL (somatic cell), U1 (milk traits), U6 (milk traits) and 5S_RRNA (milk traits). CONCLUSIONS: The findings provide new insight into the genetic basis of sheep milk properties and can play a role in designing sheep breeding programs incorporating genomic information.


Assuntos
Lactação , Leite , Animais , Feminino , Lactação/genética , Leite/metabolismo , Proteínas do Leite/genética , Proteínas do Leite/metabolismo , Nucleotídeos/metabolismo , Fenótipo , Ovinos/genética
7.
Mol Biol Evol ; 39(2)2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34893856

RESUMO

Domestic sheep and their wild relatives harbor substantial genetic variants that can form the backbone of molecular breeding, but their genome landscapes remain understudied. Here, we present a comprehensive genome resource for wild ovine species, landraces and improved breeds of domestic sheep, comprising high-coverage (∼16.10×) whole genomes of 810 samples from 7 wild species and 158 diverse domestic populations. We detected, in total, ∼121.2 million single nucleotide polymorphisms, ∼61 million of which are novel. Some display significant (P < 0.001) differences in frequency between wild and domestic species, or are private to continent-wide or individual sheep populations. Retained or introgressed wild gene variants in domestic populations have contributed to local adaptation, such as the variation in the HBB associated with plateau adaptation. We identified novel and previously reported targets of selection on morphological and agronomic traits such as stature, horn, tail configuration, and wool fineness. We explored the genetic basis of wool fineness and unveiled a novel mutation (chr25: T7,068,586C) in the 3'-UTR of IRF2BP2 as plausible causal variant for fleece fiber diameter. We reconstructed prehistorical migrations from the Near Eastern domestication center to South-and-Southeast Asia and found two main waves of migrations across the Eurasian Steppe and the Iranian Plateau in the Early and Late Bronze Ages. Our findings refine our understanding of genome variation as shaped by continental migrations, introgression, adaptation, and selection of sheep.


Assuntos
Genoma , Carneiro Doméstico , Animais , Ásia , Europa (Continente) , Variação Genética , Irã (Geográfico) , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Ovinos/genética , Carneiro Doméstico/genética
8.
J Genet Eng Biotechnol ; 19(1): 170, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34735645

RESUMO

BACKGROUND: Insulin-like growth factor 2 (IGF2) is one of three hormones that share high structural similarity to insulin. It is involved in several insulin-like growth-regulating and mitogenic activities. This study was conducted to genotype the coding regions of the IGF2 gene in Japanese quail (Coturnix japonica) using PCR-SSCP-sequencing, and to assess the possible association of the polymorphism of these regions with the main egg production traits. A total of 240 female birds with an equal number of three Japanese quail populations (Brown or BR, Black or BL, and White or WT) were included in this study. RESULTS: All the genotyped regions exerted no heterogeneity in their sequences with one exception detected in the exon 2. In this locus, a novel single nucleotide polymorphism (SNP) was detected in which "A" was substituted with "G" at 81 position with a silent effect (p.F79=SNP) on IGF2 protein. Association analyses indicated a significant (P < 0.05) relation of this SNP with egg number (EN) and bird weight (BW) in the analyzed populations, in which the birds with AG genotype had lower EN and BW than those with AA genotype. The p.F79=SNP was largely detected in the WT line than the other two lines. CONCLUSION: The detected p.F79=SNP has a highly negative effect on EN and BW in Japanese quail. Thus, the implementation of the variations of the IGF2 gene can be a useful marker in the marker-assisted selection of Japanese quail. This is the first report to describe IGF2 gene variations in Japanese quail, which strongly suggests raising the birds from the BR line with AA genotype when breeders desire to raise Japanese quail for large-scale egg production.

9.
Commun Biol ; 4(1): 1307, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795381

RESUMO

The domestication and subsequent development of sheep are crucial events in the history of human civilization and the agricultural revolution. However, the impact of interspecific introgression on the genomic regions under domestication and subsequent selection remains unclear. Here, we analyze the whole genomes of domestic sheep and their wild relative species. We found introgression from wild sheep such as the snow sheep and its American relatives (bighorn and thinhorn sheep) into urial, Asiatic and European mouflons. We observed independent events of adaptive introgression from wild sheep into the Asiatic and European mouflons, as well as shared introgressed regions from both snow sheep and argali into Asiatic mouflon before or during the domestication process. We revealed European mouflons might arise through hybridization events between a now extinct sheep in Europe and feral domesticated sheep around 6000-5000 years BP. We also unveiled later introgressions from wild sheep to their sympatric domestic sheep after domestication. Several of the introgression events contain loci with candidate domestication genes (e.g., PAPPA2, NR6A1, SH3GL3, RFX3 and CAMK4), associated with morphological, immune, reproduction or production traits (wool/meat/milk). We also detected introgression events that introduced genes related to nervous response (NEURL1), neurogenesis (PRUNE2), hearing ability (USH2A), and placental viability (PAG11 and PAG3) into domestic sheep and their ancestral wild species from other wild species.


Assuntos
Domesticação , Fluxo Gênico , Filogenia , Seleção Genética , Ovinos/genética , Animais , Carneiro da Montanha/genética , Carneiro Doméstico/genética , Sequenciamento Completo do Genoma
11.
Genet Sel Evol ; 53(1): 72, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34503452

RESUMO

BACKGROUND: Various regions of the chicken genome have been under natural and artificial selection for thousands of years. The substantial diversity that exits among chickens from different geographic regions provides an excellent opportunity to investigate the genomic regions under selection which, in turn, will increase our knowledge about the mechanisms that underlie chicken diversity and adaptation. Several statistics have been developed to detect genomic regions that are under selection. In this study, we applied approaches based on differences in allele or haplotype frequencies (FST and hapFLK, respectively) between populations, differences in long stretches of consecutive homozygous sequences (ROH), and differences in allele frequencies within populations (composite likelihood ratio (CLR)) to identify inter- and intra-populations traces of selection in two Iranian indigenous chicken ecotypes, the Lari fighting chicken and the Khazak or creeper (short-leg) chicken. RESULTS: Using whole-genome resequencing data of 32 individuals from the two chicken ecotypes, approximately 11.9 million single nucleotide polymorphisms (SNPs) were detected and used in genomic analyses after quality processing. Examination of the distribution of ROH in the two populations indicated short to long ROH, ranging from 0.3 to 5.4 Mb. We found 90 genes that were detected by at least two of the four applied methods. Gene annotation of the detected putative regions under selection revealed candidate genes associated with growth (DCN, MEOX2 and CACNB1), reproduction (ESR1 and CALCR), disease resistance (S1PR1, ALPK1 and MHC-B), behavior pattern (AGMO, GNAO1 and PSEN1), and morphological traits (IHH and NHEJ1). CONCLUSIONS: Our findings show that these two phenotypically different indigenous chicken populations have been under selection for reproduction, immune, behavioral, and morphology traits. The results illustrate that selection can play an important role in shaping signatures of differentiation across the genomic landscape of two chicken populations.


Assuntos
Galinhas/genética , Ecótipo , Genoma , Seleção Genética , Animais , Proteínas Aviárias/genética , Irã (Geográfico) , Polimorfismo de Nucleotídeo Único
14.
BMC Res Notes ; 14(1): 305, 2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34372924

RESUMO

OBJECTIVE: Navigation is the most important feature of homing pigeons, however no integrated response to genetic mechanism of navigation has been reported. The generated data herein represent whole-genome resequencing data for homing pigeon and three other breeds of rock pigeons. Selective sweep analysis between homing pigeon and other breeds of rock pigeon can provide new insight about identification of candidate genes and biological pathways for homing pigeon ability. DATA DESCRIPTION: Whole-genomes sequence data related to 95 birds from four breeds of rock pigeons including, 29 feral pigeons, 24 Shiraz tumblers, 24 Persian high flyers and 18 homing pigeons were provided. More than 6.94 billion short reads with coverage (average ≈7.50 x) and 407.1 Gb data were produced. Whole genome sequencing was carried out on the Illumina Hiseq 2000 platform using a 350 bp library size and 150 bp paired-end read lengths. The whole genome sequencing data have been submitted at the NCBI SRA Database (PRJNA532675). The presented data set can provide useful genomic information to explain the genetic mechanism of navigation ability of homing pigeons and also testing other genetic hypothesis by genomic analysis.


Assuntos
Columbidae , Genoma , Animais , Columbidae/genética , Genômica , Sequenciamento de Nucleotídeos em Larga Escala
15.
Genomics ; 113(6): 3501-3511, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34293474

RESUMO

Archaeological and genetic evidence show that sheep were originally domesticated in area around the North of Zagros mountains, North-west of Iran. The Persian plateau exhibits a variety of native sheep breeds with a common characteristic of coarse-wool production. Therefore, knowledge about the genetic structure and diversity of Iranian sheep and genetic connections with other sheep breeds is of great interest. To this end, we genotyped 154 samples from 11 sheep breeds distributed across Iran with the Ovine Infinium HD SNP 600 K BeadChip array, and analyzed this dataset combined with the retrieved data of 558 samples from 19 worldwide coarse-wool sheep breeds. The average genetic diversity ranged from 0.315 to 0.354, while the FST values ranged from 0.016 to 0.177 indicating a low differentiation of Iranian sheep. Analysis of molecular variance showed that 90.21 and 9.79% of the source of variation were related to differences within and between populations, respectively. Our results indicated that the coarse-wool sheep from Europe were clearly different from those of the Asia. Accordingly, the Asiatic mouflon was positioned between Asian and European countries. In addition, we found that the genetic background of Iranian sheep is present in sheep from China and Kyrgyzstan, as well as India. The revealed admixture patterns of the Iranian sheep and other coarse-wool sheep breeds probably resulted from the expansion of nomads and through the Silk Road trade network.


Assuntos
Genética Populacional , , Animais , Estruturas Genéticas , Variação Genética , Irã (Geográfico) , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único , Ovinos/genética
16.
J Genet Eng Biotechnol ; 19(1): 100, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34236536

RESUMO

BACKGROUND: Hypoxia refers to the condition of low oxygen pressure in the atmosphere and characterization of response to hypoxia as a biological complex puzzle, is challenging. Previously, we carried out a comparative genomic study by whole genome resequencing of highland and lowland Iranian native chickens to identify genomic variants associated with hypoxia conditions. Based on our previous findings, we used chicken as a model and the identified hypoxia-associated genes were converted to human's orthologs genes to construct the informative gene network. The main goal of this study was to visualize the features of diseases due to hypoxia-associated genes by gene network analysis. RESULTS: It was found that hypoxia-associated genes contained several gene networks of disorders such as Parkinson, Alzheimer, cardiomyopathy, drug toxicity, and cancers. We found that biological pathways are involved in mitochondrion dysfunctions including peroxynitrous acid production denoted in brain injuries. Lewy body and neuromelanin were reported as key symptoms in Parkinson disease. Furthermore, calmodulin, and amyloid precursor protein were detected as leader proteins in Alzheimer's diseases. Dexamethasone was reported as the candidate toxic drug under the hypoxia condition that implicates diabetes, osteoporosis, and neurotoxicity. Our results suggested DNA damages caused by the high doses of UV radiation in high-altitude conditions, were associated with breast cancer, ovarian cancer, and colorectal cancer. CONCLUSIONS: Our results showed that hypoxia-associated genes were enriched in several gene networks of disorders including Parkinson, Alzheimer, cardiomyopathy, drug toxicity, and different types of cancers. Furthermore, we suggested, UV radiation and low oxygen conditions in high-altitude regions may be responsible for the variety of human diseases.

17.
BMC Res Notes ; 14(1): 290, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315525

RESUMO

OBJECTIVES: Pistacia genus belongs to the flowering plants in the cashew family and contains at least 11 species. The whole-genome resequencing data of different species from Pistacia genus are described herein. The data reported here will be useful for better understand the adaptive evolution, demographic history, genetic diversity, population structure, and domestication of pistachio. DATA DESCRIPTION: Genomic DNA was isolated from fresh leaves and used to construct libraries with insert size of 350 bp. Sequence libraries were made and sequenced on the Illumina Hiseq 4000 platform to produce 150 bp paired-end reads. A total number of 4,851,118,730 billion reads (ranging from 33,305,900 to 34,990,618 reads per sample) were created across all samples. We produced a total of 727.67 Gbp data which have been deposited in the Genome Sequence Archive (GSA) database with the Accession of CRA000978. All of the data are also available as the sequence read archive (SRA) format in the National Center for Biotechnology Information (NCBI) with identifier of SRP189222, mirroring our deposited data in GSA.


Assuntos
Pistacia , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Pistacia/genética
18.
Zool Res ; 42(4): 450-460, 2021 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-34156172

RESUMO

Over the last several hundred years, donkeys have adapted to high-altitude conditions on the Tibetan Plateau. Interestingly, the kiang, a closely related equid species, also inhabits this region. Previous reports have demonstrated the importance of specific genes and adaptive introgression in divergent lineages for adaptation to hypoxic conditions on the Tibetan Plateau. Here, we assessed whether donkeys and kiangs adapted to the Tibetan Plateau via the same or different biological pathways and whether adaptive introgression has occurred. We assembled a de novo genome from a kiang individual and analyzed the genomes of five kiangs and 93 donkeys (including 24 from the Tibetan Plateau). Our analyses suggested the existence of a strong hard selective sweep at the EPAS1 locus in kiangs. In Tibetan donkeys, however, another gene, i.e., EGLN1, was likely involved in their adaptation to high altitude. In addition, admixture analysis found no evidence for interspecific gene flow between kiangs and Tibetan donkeys. Our findings indicate that despite the short evolutionary time scale since the arrival of donkeys on the Tibetan Plateau, as well as the existence of a closely related species already adapted to hypoxia, Tibetan donkeys did not acquire adaptation via admixture but instead evolved adaptations via a different biological pathway.


Assuntos
Adaptação Fisiológica/genética , Altitude , Equidae/genética , Equidae/fisiologia , Genoma , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Evolução Biológica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/fisiologia , Especificidade da Espécie
19.
Front Genet ; 12: 670582, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093663

RESUMO

Copy number variations (CNVs) are a major source of structural variation in mammalian genomes. Here, we characterized the genome-wide CNV in 2059 sheep from 67 populations all over the world using the Ovine Infinium HD (600K) SNP BeadChip. We tested their associations with distinct phenotypic traits by conducting multiple independent genome-wide tests. In total, we detected 7547 unique CNVs and 18,152 CNV events in 1217 non-redundant CNV regions (CNVRs), covering 245 Mb (∼10%) of the whole sheep genome. We identified seven CNVRs with frequencies correlating to geographical origins and 107 CNVRs overlapping 53 known quantitative trait loci (QTLs). Gene ontology and pathway enrichment analyses of CNV-overlapping genes revealed their common involvement in energy metabolism, endocrine regulation, nervous system development, cell proliferation, immune, and reproduction. For the phenotypic traits, we detected significantly associated (adjusted P < 0.05) CNVRs harboring functional candidate genes, such as SBNO2 for polycerate; PPP1R11 and GABBR1 for tail weight; AKT1 for supernumerary nipple; CSRP1, WNT7B, HMX1, and FGFR3 for ear size; and NOS3 and FILIP1 in Wadi sheep; SNRPD3, KHDRBS2, and SDCCAG3 in Hu sheep; NOS3, BMP1, and SLC19A1 in Icelandic; CDK2 in Finnsheep; MICA in Romanov; and REEP4 in Texel sheep for litter size. These CNVs and associated genes are important markers for molecular breeding of sheep and other livestock species.

20.
BMC Biol ; 19(1): 118, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34130700

RESUMO

BACKGROUND: Species domestication is generally characterized by the exploitation of high-impact mutations through processes that involve complex shifting demographics of domesticated species. These include not only inbreeding and artificial selection that may lead to the emergence of evolutionary bottlenecks, but also post-divergence gene flow and introgression. Although domestication potentially affects the occurrence of both desired and undesired mutations, the way wild relatives of domesticated species evolve and how expensive the genetic cost underlying domestication is remain poorly understood. Here, we investigated the demographic history and genetic load of chicken domestication. RESULTS: We analyzed a dataset comprising over 800 whole genomes from both indigenous chickens and wild jungle fowls. We show that despite having a higher genetic diversity than their wild counterparts (average π, 0.00326 vs. 0.00316), the red jungle fowls, the present-day domestic chickens experienced a dramatic population size decline during their early domestication. Our analyses suggest that the concomitant bottleneck induced 2.95% more deleterious mutations across chicken genomes compared with red jungle fowls, supporting the "cost of domestication" hypothesis. Particularly, we find that 62.4% of deleterious SNPs in domestic chickens are maintained in heterozygous states and masked as recessive alleles, challenging the power of modern breeding programs to effectively eliminate these genetic loads. Finally, we suggest that positive selection decreases the incidence but increases the frequency of deleterious SNPs in domestic chicken genomes. CONCLUSION: This study reveals a new landscape of demographic history and genomic changes associated with chicken domestication and provides insight into the evolutionary genomic profiles of domesticated animals managed under modern human selection.


Assuntos
Galinhas , Domesticação , Animais , Animais Domésticos/genética , Galinhas/genética , Genoma , Genômica , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...