Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 57(22): 14170-14177, 2018 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-30378423

RESUMO

We report the design, preparation, and characterization of two families of thermally robust coordination complexes based on lanthanoid quinolinate compounds: [Ln(5,7-Br2q)4]- and [Ln(5,7-ClIq)4]-, where q = 8-hydroquinolinate anion and Ln = DyIII, TbIII, ErIII, and HoIII. The sodium salt of [Dy(5,7-Br2q)4]- decomposes upon sublimation, whereas the sodium salt of [Dy(5,7-ClIq)4]-, which displays subtly different crystalline interactions, is sublimable under gentle conditions. The resulting film presents low roughness with high coverage, and the molecular integrity of the coordination complex is verified through AFM, MALDI-TOF, FT-IR, and microanalysis. Crucially, the single-molecule magnet behavior exhibited by [Dy(5,7-ClIq)4]- in bulk remains detectable by ac magnetometry in the sublimated film.

2.
Chem Sci ; 8(4): 3109-3120, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28507686

RESUMO

Discrimination between different gases is an essential aspect for industrial and environmental applications involving sensing and separation. Several classes of porous materials have been used in this context, including zeolites and more recently MOFs. However, to reach high selectivities for the separation of gas mixtures is a challenging task that often requires the understanding of the specific interactions established between the porous framework and the gases. Here we propose an approach to obtain an enhanced selectivity based on the use of compartmentalized coordination polymers, named CCP-1 and CCP-2, which are crystalline materials comprising isolated discrete cavities. These compartmentalized materials are excellent candidates for the selective separation of CO2 from methane and nitrogen. A complete understanding of the sorption process is accomplished with the use of complementary experimental techniques including X-ray diffraction, adsorption studies, inelastic- and quasi-elastic neutron scattering, magnetic measurements and molecular dynamics calculations.

3.
Chem Commun (Camb) ; 51(75): 14207-10, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26256944

RESUMO

Layered gadolinium hydroxides have revealed to be excellent candidates for cryogenic magnetic refrigeration. These materials behave as pure 2D magnetic systems with a Heisenberg-Ising critical crossover, induced by dipolar interactions. This 2D character and the possibility offered by these materials to be delaminated open the possibility of rapid heat dissipation upon substrate deposition.

4.
Inorg Chem ; 52(15): 8451-60, 2013 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-23837714

RESUMO

The restacking of charged TaS2 nanosheets with molecular counterparts has so far allowed for the combination of superconductivity with a manifold of other molecule-intrinsic properties. Yet, a hybrid compound that blends superconductivity with spin crossover switching has still not been reported. Here we continue to exploit the solid-state/molecule-based hybrid approach for the synthesis of a layered TaS2-based material that hosts Fe(2+) complexes with a spin switching behavior. The chemical design and synthetic aspects of the exfoliation/restacking approach are discussed, highlighting how the material can be conveniently obtained in the form of highly oriented easy-to-handle flakes. Finally, proof of the presence of both phenomena is provided by the use of a variety of physical characterization techniques. The likely sensitivity of the intercalated Fe(2+) complexes to external stimuli such as light opens the door for the study of synergistic effects between the superconductivity and the spin crossover switching at low temperatures.

5.
Nat Commun ; 3: 828, 2012 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-22569372

RESUMO

Responsive materials for which physical or chemical properties can be tuned by applying an external stimulus are attracting considerable interest in view of their potential applications as chemical switches or molecular sensors. A potential source of such materials is metal-organic frameworks. These porous coordination polymers permit the physisorption of guest molecules that can provoke subtle changes in their porous structure, thus affecting their physical properties. Here we show that the chemisorption of gaseous HCl molecules by a non-porous one-dimensional coordination polymer instigates drastic modifications in the magnetic properties of the material. These changes result from profound structural changes, involving cleavage and formation of covalent bonds, but with no disruption of crystallinity.

6.
J Am Chem Soc ; 129(50): 15606-14, 2007 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-18034480

RESUMO

Hydrogen chloride gas (HCl) is absorbed (and reversibly released) by a nonporous crystalline solid, [CuCl2(3-Clpy)2] (3-Clpy = 3-chloropyridine), under ambient conditions leading to conversion from the blue coordination compound to the yellow salt (3-ClpyH)2[CuCl4]. These reactions require substantial motions within the crystalline solid including a change in the copper coordination environment from square planar to tetrahedral. This process also involves cleavage of the covalent bond of the gaseous molecules (H-Cl) and of coordination bonds of the molecular solid compound (Cu-N) and formation of N-H and Cu-Cl bonds. These reactions are not a single-crystal-to-single-crystal transformation; thus, the crystal structure determinations have been performed using X-ray powder diffraction. Importantly, we demonstrate that these reactions proceed in the absence of solvent or water vapor, ruling out the possibility of a water-assisted (microscopic recrystallization) mechanism, which is remarkable given all the structural changes needed for the process to take place. Gas-phase FTIR spectroscopy has permitted us to establish that this process is actually a solid-gas equilibrium, and time-resolved X-ray powder diffraction (both in situ and ex situ) has been used for the study of possible intermediates as well as the kinetics of the reaction.


Assuntos
Gases/química , Cristalização , Ácido Clorídrico/química , Cinética , Modelos Moleculares , Conformação Molecular , Transição de Fase , Porosidade , Espectrofotometria Infravermelho , Água/química , Difração de Raios X
8.
J Magn Reson ; 161(2): 258-64, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12713978

RESUMO

A new strategy has been developed to measure cross-correlation rates with much enhanced accuracy. The method relies on the use of four complementary experiments. Errors due to pulse miscalibration and to uncontrolled attenuation factors associated with relaxation are cancelled out. Problems due to violations of the secular approximation are greatly alleviated. The method has been applied to the measurement of N/NH (CSA/DD) cross-correlated relaxation rates in human ubiquitin.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Ubiquitina/química , Anisotropia , Isótopos de Carbono , Humanos , Isótopos de Nitrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA