Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Sci Total Environ ; 806(Pt 3): 150641, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34606866

RESUMO

We, (1) studied carbapenem-resistant Enterobacterales (CRE) in the environment, humans, and animals, within the same geographical area and, (2) delineated the isolates' resistome, mobilome, virulome, and phylogeny. Following ethical approval, 587 samples (humans = 230, pigs = 345, and water = 12) were collected and cultured on CRE selective media. Confirmatory identification and antibiotic susceptibility testing were performed using the VITEK 2 automated platform. The resistomes, virulomes, mobilomes, and phylogenies were ascertained by whole genome sequencing. Nineteen (3.2%), i.e., 15/19 humans and 4/19 environmental, but no pig, CRE were obtained. CREs included Klebsiella pneumoniae 9/19 (47%), Enterobacter hormaechei 6/19 (32%), Klebsiella quasipneumoniae 2/19 (11%), a novel ST498 Citrobacter freundii 1/19 (5%) and Serratia marcescens 1/19 (5%). Eleven isolates were extensively drug-resistant; eight were multidrug-resistant. Sixteen CRE harbored the blaOXA-181, blaOXA-48, blaOXA-484, blaNDM-1, and blaGES-5 genes. Multiple species/clones carried blaOXA-48 and blaNDM-1 carbapenemase-encoding genes with respective mobile genetic elements (MGEs). The IncFIB(K) plasmid replicon was found in most human K. pneumoniae strains (7/9) and all environmental K. quasipneumoniae isolates; most K. pneumoniae produced OXA-181 (5/9). The (Col440I) plasmid replicon, identified in 11 (26.82%) isolates, mainly E. hormaechei (n = 6), predominated both sectors. Most ß-lactamase-encoding genes were associated with class 1 integrons IntI1, insertion sequences (IS) (IS91, IS5075, IS30, IS3000, IS3, IS19, ISKpn19, IS5075) and transposons (Tn3). The IncL/M(pMU407) and IncL/M(pOXA48) plasmid replicons were found exclusively in K. pneumoniae; all but one of these strains produced OXA-181. Also, the Klebsiella spp. harbored 80 virulence genes. Phylogenomic clustered identified isolates with other carbapenemase-producing K. pneumoniae, E. hormaechei, S. marcescens, and C. freundii from different South African sources (animals, environment, and humans). We delineated the resistome, mobilome, virulome, and phylogeny of carbapenemase-producing Enterobacterales in humans and environment, highlighting antibiotic resistance genes propagation via MGEs across sectors, emphasizing a One Health approach to AMR.

2.
J Environ Manage ; 302(Pt B): 114101, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34800768

RESUMO

Manure from food animals exposed to antibiotics is often used as soil fertiliser, potentially releasing antibiotic-resistant bacteria (ARB) with diverse antibiotic-resistance genes (ARGs) into the soil. To determine the impact of chicken litter application on the soil resistome, Enterococcus spp. isolated from chicken litter and soil samples collected before and after the soil amendment were characterised, using whole-genome sequencing and bioinformatics tools. Nineteen Enterococcus spp. isolates from the three sources were sequenced on Illumina Miseq platform to ascertain the isolates' resistome, mobilome, virulome, clonality, and phylogenomic relationships. Multilocus sequence typing (MLST) analysis revealed eight novel sequence types (STs) (ST1700, ST1752, ST1753, ST1754, ST1755, ST1756, ST1004, and ST1006). The isolates harboured multiple resistance genes including those conferring resistance to inter alia macrolides-lincosamide-streptogramin (erm(B), lnu(B), lnu(G), lsaA, lsaE, eat(A), msr(C)), tetracycline (tet(M), tet(L), tet(S)), aminoglycosides (aac(6')-Ii, aac(6')-Iih, ant(6)-Ia, aph(3')-III, ant(9)-Ia), fluoroquinolones (efmA, and emeA), vancomycin (VanC {VanC-2, VanXY, VanXYC-3, VanXYC-4, VanRC}), and chloramphenicol (cat). The litter-amended soil harboured new ARB (particularly E. faecium) and ARGs (ant(6)-Ia, aac(6')-Ii, aph(3')-III), lnu(G), msr(C), and eat(A), efmA) that were not previously detected in the soil. The identified ARGs were associated with diverse mobile genetic elements (MGEs) such as insertion sequences (IS6, ISL3, IS256, IS30), transposons (Tn3 and Tn916) and plasmids (repUS43, repUS1, rep9b, and rep 22). Twenty-eight virulence genes encoding adherence/biofilm formation (ebpA, ebpB, ebpC), antiphagocytosis (elrA) and bacterial sex pheromones (Ccf10, cOB1, cad, and camE), were detected in the genomes of the isolates. Phylogenomic analysis revealed a close relationship between a few isolates from litter-amended soil and the chicken litter isolates. The differences in the ARG and ARB profiles in the soil before and after the litter amendment and their association with diverse MGEs indicate the mobilisation and transmission of ARGs and ARB from the litter to the soil.

3.
S Afr J Infect Dis ; 36(1): 262, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34485504

RESUMO

Background: Sustained injudicious and indiscriminate use of antimicrobials has exerted selection pressure for developing antimicrobial resistance (AMR), requiring behaviour change from healthcare professionals (HCPs) based on their knowledge, attitudes and practices (KAP) on antimicrobials, AMR and antimicrobial stewardship (AMS). Methods: A cross-sectional online questionnaire-based survey was conducted nationally amongst doctors, pharmacists and nurses from November 2017 to January 2018. The questionnaire comprised demographic information and KAP questions. Results: Respondents comprised of 1120 doctors, 744 pharmacists and 659 nurses. Antimicrobial resistance was considered a severe problem globally and nationally by majority of HCPs. Self-assessment of knowledge revealed gaps in understanding of antimicrobials, AMR and AMS. Confidence scores in prescribing by doctors, pharmacists and nurses were 57.82%, 32.88% and 45.28%, respectively. Doctors, 441 (45.2%) indicated no confidence in using combination therapy. Prescribing correctly showed a confidence level of 33.99% from 436 doctors, 41.88% from nine pharmacists and 35.23% from 107 nurses. Healthcare professionals (1600 [91.22%]) stated educational campaigns would combat AMR. Only 842 (40.13%) HCPs attended training on these topics and 1712 (81.60%) requesting more education and training. Conclusion: This is the first comparative survey on KAP of practising doctors, pharmacists and nurses in South Africa. Doctors had the highest knowledge score followed by nurses and pharmacists. Practice scores did not corroborate knowledge and the higher attitude scores. Gaps in KAP were evident. Healthcare professionals indicated the need for more education and training, thus requiring a review of pre-service and in-service education and training in addition to continued professional development programmes for practising HCPs.

4.
Front Microbiol ; 12: 656306, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421833

RESUMO

Staphylococcus epidermidis has become an important nosocomial pathogen. Multidrug resistance makes S. epidermidis infections difficult to treat. The study aims to describe the genomic characteristics of methicillin-resistant S. epidermidis (MRSE) isolated from clinical sources, to comprehend the genetic basis of antibiotic resistance, virulence, and potential pathogenicity. Sixteen MRSE underwent whole-genome sequencing, and bioinformatics analyses were carried out to ascertain their resistome, virulome, mobilome, clonality, and phylogenomic relationships. In all, 75% of isolates displayed multidrug resistance and were associated with the carriage of multiple resistance genes including mecA, blaZ, tet(K), erm(A), erm(B), erm(C), dfrG, aac(6')-aph(2''), and cat(pC221) conferring resistance to ß-lactams, tetracyclines, macrolide-lincosamide-streptogramin B, aminoglycosides, and phenicols, which were located on both plasmids and chromosomes. Their virulence profiles were evidenced by the presence of genes involved in adherence/biofilm formation (icaA, icaB, icaC, atl, ebh, and ebp), immune evasion (adsA, capC, and manA), and antiphagocytosis (rmlC, cdsA, and A). The community-acquired SCCmec type IV was the most common SCCmec type. The CoNS belonged to seven multilocus sequence types (MLSTs) and carried a diversity of mobile genetic elements such as phages, insertion sequences, and plasmids. The bacterial anti-phage defense systems clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR-Cas) immunity phage system and restriction-modification system (R-M system) and the arginine catabolic mobile element (ACME) involved in immune evasion and transport of virulence genes were also found. The insertion sequence, IS256, linked with virulence, was found in 56.3% of isolates. Generally, the isolates clustered according to STs, with some similarity but also considerable variability within isolates. Whole-genome sequencing and bioinformatics analysis provide insights into the likely pathogenicity and antibiotic resistance of S. epidermidis, necessitating surveillance of this emerging pathogen.

5.
Antibiotics (Basel) ; 10(7)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34356780

RESUMO

Wastewater treatment plants (WWTPs) are major reservoirs of antibiotic-resistant bacteria (ARB), favouring antibiotic resistance genes (ARGs) interchange among bacteria and they can provide valuable information on ARB circulating in a community. This study characterised extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli from the influent and effluent of four WWTPs in uMgungundlovu District, KwaZulu-Natal, South Africa. E. coli was enumerated using the membrane filtration method and confirmed using the API 20E test and real-time polymerase chain reaction. ESBL-producers were phenotypically identified by their susceptibility to the third-generation cephalosporins using the disc diffusion and the double-disc synergy methods against cefotaxime (30 µg) with and without 10 µg clavulanic acid. Genotypic verification was by PCR of the TEM, SHV, and CTX-M genes. The clonality of isolates was assessed by ERIC-PCR. The highest E. coli count ranged between 1.1 × 105 (influent) and 4.3 × 103 CFU/mL (effluent). Eighty pure isolates were randomly selected, ten from the influent and effluent of each of the four WWTP. ESBLs were phenotypically confirmed in 49% (n = 39) of the isolates, of which 77% (n = 30) were genotypically confirmed. Seventy-three percent of the total isolates were multidrug-resistant (MDR). Only two isolates were susceptible to all antibiotics. Overall, resistance to first and second-generation cephalosporins was higher than to third and fourth generation cephalosporins. Also, 15% of the isolates were resistant to carbapenems. The CTX-M-type ESBL (67%; n = 20) was the most common ESBL antibiotic resistance gene (ARG) followed by TEM (57%; n = 17) and SHV-types (27%; n = 8). Also, a substantial number of isolates simultaneously carried all three ESBL genes. ERIC-PCR revealed a high diversity of isolates. The diversity of the isolates observed in the influent samples suggest the potential circulation of different ESBL-producing strains within the studied district, requiring a more comprehensive epidemiological study to prevent the spread of ESBL-producing bacteria within impoverished communities.

7.
J Appl Microbiol ; 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34260809

RESUMO

AIMS: Enterococci are implicated in hospital-acquired infections and show high tenacity on inanimate objects in the hospital environment. This study investigated the prevalence of Enterococcus spp. in selected wards in public hospitals at four levels of healthcare from a district in KwaZulu-Natal, South Africa. METHODS AND RESULTS: Swabs were collected from frequently touched areas in the paediatric wards and intensive care units (ICUs). Presumptive Enterococcus spp. were isolated and confirmed to genus and species levels, followed by Kirby-Bauer disk diffusion against 14 antibiotics. The results showed that enterococci were recovered from all 11 surfaces tested with the highest contamination rate observed on occupied beds and mops used to clean floors. A total number of 295 Enterococcus was identified. Polymerase chain reaction identified Enterococcus faecalis 83.1% (245/295) and Enterococcus faecium 12.9% (38/295), while whole genome sequencing identified Enterococcus gallinarum 2.0% (6/295) and Enterococcus casseliflavus 2.0% (6/295). Significant prevalence was observed in paediatric wards 64.1% (189/295) compared with the ICUs 35.9% (106/295), p < 0.05, in central, regional and district hospitals. Collectively, 82.0% (242/295) of enterococcal isolates were multidrug resistant, and 80 different antibiograms were observed. The most prominent antibiogram for E. faecium was CIP-RIF-NIT-TET-ERY and for E. faecalis CIP-TET-ERY. CONCLUSION: E. faecalis was the most frequent enterococcal species isolated in all the hospitals investigated and correlates with studies conducted elsewhere. A substantially greater number of isolates were recovered from the paediatric wards compared with ICUs, and thus improved standards should be developed for infection control practices. It is suggested that the elevated use of antibiotics contributed to the increased nonsusceptible isolates observed from ICUs. This study highlighted the high recovery rate of enterococci in the hospital environment even in a nonoutbreak setting. SIGNIFICANCE AND IMPACT OF THE STUDY: Enterocci had a high prevalence rate on the surfaces within the hospitals studied. This study gives an insight into the possible roles all healthcare staff may play in infection control intervention, including proper handling of hospital cleaning equipment and lack of knowledge about the potential for bacteria dissemination.

8.
Front Microbiol ; 12: 648454, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34194401

RESUMO

We investigated the antibiotic resistome, mobilome, virulome, and phylogenomic lineages of Enterococcus spp. obtained from a wastewater treatment plant and its associated waters using whole-genome sequencing (WGS) and bioinformatics tools. The whole genomes of Enterococcus isolates including Enterococcus faecalis (n = 4), Enterococcus faecium (n = 5), Enterococcus hirae (n = 2), and Enterococcus durans (n = 1) with similar resistance patterns from different sampling sites and time points were sequenced on an Illumina MiSeq machine. Multilocus sequence typing (MLST) analysis revealed two E. faecalis isolates that had a common sequence type ST179; the rest had unique sequence types ST841, and ST300. The E. faecium genomes belonged to 3 sequence types, ST94 (n = 2), ST361 (n = 2), and ST1096 (n = 1). Detected resistance genes included those encoding tetracycline [tet(S), tet(M), and tet(L)], and macrolides [msr(C), msr(D), erm(B), and mef(A)] resistance. Antibiotic resistance genes were associated with insertion sequences (IS6, ISL3, and IS982), and transposons (Tn3 and Tn6000). The tet(M) resistance gene was consistently found associated with a conjugative transposon protein (TcpC). A total of 20 different virulence genes were identified in E. faecalis and E. faecium including those encoding for sex pheromones (cCF10, cOB1, cad, and came), adhesion (ace, SrtA, ebpA, ebpC, and efaAfs), and cell invasion (hylA and hylB). Several virulence genes were associated with the insertion sequence IS256. No virulence genes were detected in E. hirae and E. durans. Phylogenetic analysis revealed that all Enterococcus spp. isolates were more closely related to animal and environmental isolates than clinical isolates. Enterococcus spp. with a diverse range of resistance and virulence genes as well as associated mobile genetic elements (MGEs) exist in the wastewater environment in South Africa.

9.
Genes (Basel) ; 12(7)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206235

RESUMO

The study investigated carbapenemase-producing Klebsiella pneumoniae (CPKP) isolates of patients in an intensive care unit (ICU) in a public hospital in the KwaZulu-Natal province, South Africa using whole-genome sequencing (WGS). Ninety-seven rectal swabs, collected from all consenting adult patients (n = 31) on days 1, 3, and 7 and then weekly, were screened for carbapenemase-production using Chrome-ID selective media. Antibiotic susceptibility was determined for the fourteen positive CPKP isolates obtained using the VITEK 2 automated system. All isolates (100%) were resistant to ertapenem and meropenem, and 71.4% (n = 10) were resistant to imipenem. All CPKP isolates were subjected to ERIC/PCR, and a sub-sample of isolates was selected for WGS based on their antibiograms and clonality. All sequenced isolates harbored the blaOXA-181 carbapenemase (100%) and co-carried other ß-lactamase genes such as blaOXA-1, blaCTX-M-15, blaTEM-1B, and blaSHV-1. IncF, IncX3, and Col plasmid replicons groups and class I integrons (ln191 and ln27) were detected. All isolates belonged to the same sequence type ST307 and capsular serotypes (K102, O2v2). All the isolates carried the same virulence repertoire, reflecting the epidemiological relationship between isolates. blaOXA-181 was located on a multi-replicon plasmid similar to that of E. coli p010_B-OXA181, and isolates were aligned with several South African and international clades, demonstrating horizontal and vertical transboundary distribution. The findings suggest that blaOXA-181 producing K. pneumoniae is endemic in this ICU, colonizing the patients. CRE screening and enhanced infection prevention and control measures are urgently required.

10.
Antibiotics (Basel) ; 10(5)2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-34063697

RESUMO

Antibiotic resistance is considered to be a major threat to global health. The main driver of antibiotic resistance is antibiotic use. Antibiotics are used in humans, animals, and food production and are released into the environment. Therefore, it is imperative to include all relevant sectors in the work to contain antibiotic resistance, i.e., a One Health approach. In this study, we aimed to describe and analyse Sweden's policies related to containing antibiotic resistance, from a One Health perspective. Twenty-three key policy documents related to containment of antibiotic resistance in Sweden were selected and analysed according to the policy triangle framework. Sweden started early to introduce policies for containing antibiotic resistance from an international perspective. Systematic measures against antibiotic resistance were implemented in the 1980s, strengthened by the creation of Strama in 1995. The policies involve agencies and organisations from human and veterinary medicine, the environment, and food production. All actors have clear responsibilities in the work to contain antibiotic resistance with a focus on international collaboration, research, and innovation. Sweden aims to be a model country in the work to contain antibiotic resistance and has a strategy for achieving this through international cooperation through various fora, such as the EU, the UN system, and OECD.

11.
Antimicrob Agents Chemother ; 65(7): e0028921, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33941520

RESUMO

Two novel blaDIM-1- or blaIMP-1-containing genomic islands (GIs) were discovered by whole-genome sequence analyses in four extensively drug-resistant (XDR) Pseudomonas aeruginosa isolates from inpatients at a tertiary hospital in Ghana. The strains were of sequence type 234 (ST234) and formed a phylogenetic clade together with ST111, which is recognized as a global high-risk clone. Their carbapenem resistance was encoded by two Tn402-type integrons, In1592 (blaDIM-1) and In1595 (blaIMP-1), both carrying complete tni mobilization modules. In1595 was bound by conserved 25-bp inverted repeats (IRs) flanked by 5-bp direct repeats (DRs) associated with target site duplication. The integrons were embedded in two GIs that contained cognate integrases and were distinguished by a lower GC content than the chromosomal average. PAGI-97A (52.659 bp; In1592), which encoded a P4-type site-specific integrase of the tyrosine recombinase family in its 3' border, was integrated into tRNA-Pro(ggg) and bracketed by a 49-bp perfect DR created by 3'-end target duplication. GIs with the same structural features, but diverse genetic content, were identified in 41/226 completed P. aeruginosa genomes. PAGI-97B (22,636 bp; In1595), which encoded an XerC/D superfamily integrase in its 5' border, was inserted into the small RNA (sRNA) PrrF1/PrrF2 locus. Specific insertions into this highly conserved locus involved in iron-dependent regulation, all leaving PrrF1 intact, were identified in an additional six phylogenetically unrelated P. aeruginosa genomes. Our molecular analyses unveiled a hospital-associated clonal dissemination of carbapenem-resistant ST234 P. aeruginosa in which the XDR phenotype resulted from novel insertions of two GIs into specific chromosomal sites.


Assuntos
Preparações Farmacêuticas , Infecções por Pseudomonas , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Gana , Humanos , Integrons/genética , Testes de Sensibilidade Microbiana , Filogenia , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/genética , beta-Lactamases/genética
12.
Future Sci OA ; 7(5): FSO692, 2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-34046194

RESUMO

Antimicrobial resistance (AMR) threatens to reverse the essential benefits of antibiotics, not only in humans, where decades of advancements in healthcare outcomes are endangered, but also in the food production industry. As the world moves toward Sustainable Development Goals, food safety is a critical element to improve and strengthen global health, and ensure sustainable development. Emergence of AMR in the food production industry represents a serious risk for exposed workers, their relatives and consumers. This perspective presents the challenge of AMR through the lens of food safety, by highlighting its multisectoral and multidimensional implications not only on the Sustainable Development Goals for food safety and public health but also on food security, animal health and welfare, the environment and climate, and socioeconomic development.

13.
Microorganisms ; 9(5)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33918989

RESUMO

Foodborne pathogens, including antibiotic-resistant species, constitute a severe menace to food safety globally, especially food animals. Identifying points of concern that need immediate mitigation measures to prevent these bacteria from reaching households requires a broad understanding of these pathogens' spread along the food production chain. We investigated the distribution, antibiotic susceptibility, molecular characterization and clonality of Enterococcus spp. in an intensive pig production continuum in South Africa, using the farm-to-fork approach. Enterococcus spp. were isolated from 452 samples obtained along the pig farm-to-fork continuum (farm, transport, abattoir, and retail meat) using the IDEXX Enterolert®/Quanti-Tray® 2000 system. Pure colonies were obtained on selective media and confirmed by real-time PCR, targeting genus- and species-specific genes. The susceptibility to antibiotics was determined by the Kirby-Bauer disk diffusion method against 16 antibiotics recommended by the WHO-AGISAR using EUCAST guidelines. Selected antibiotic resistance and virulence genes were detected by real-time PCR. Clonal relatedness between isolates across the continuum was evaluated by REP-PCR. A total of 284 isolates, consisting of 79.2% E. faecalis, 6.7% E. faecium, 2.5% E. casseliflavus, 0.4% E. gallinarum, and 11.2% other Enterococcus spp., were collected along the farm-to-fork continuum. The isolates were most resistant to sulfamethoxazole-trimethoprim (78.8%) and least resistant to levofloxacin (5.6%). No resistance was observed to vancomycin, teicoplanin, tigecycline and linezolid. E. faecium displayed 44.4% resistance to quinupristin-dalfopristin. Also, 78% of the isolates were multidrug-resistant. Phenotypic resistance to tetracycline, aminoglycosides, and macrolides was corroborated by the presence of the tetM, aph(3')-IIIa, and ermB genes in 99.1%, 96.1%, and 88.3% of the isolates, respectively. The most detected virulence gene was gelE. Clonality revealed that E. faecalis isolates belonged to diverse clones along the continuum with major REP-types, mainly isolates from the same sampling source but different sampling rounds (on the farm). E. faecium isolates revealed a less diverse profile. The results suggest that intensive pig farming could serve as a reservoir of antibiotic-resistant bacteria that could be transmitted to occupationally exposed workers via direct contact with animals or consumers through animal products/food. This highlights the need for more robust guidelines for antibiotic use in intensive farming practices and the necessity of including Enterococcus spp. as an indicator in antibiotic resistance surveillance systems in food animals.

14.
Pathogens ; 10(3)2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800367

RESUMO

Although Staphylococcus aureus is a major threat to the veterinary, agricultural, and public health sectors because of its zoonotic potential, studies on its molecular characterisation in intensive animal production are rare. We phenotypically and genotypically characterised antibiotic-resistant S. aureus in intensive pig production in South Africa, using the farm-to-fork approach. Samples (n = 461) were collected from the farm, transport vehicles, and the abattoir using the World Health Organisation on Integrated Surveillance of Antimicrobial Resistance (WHO-AGISAR) sampling protocol. Bacteria were isolated using selective media and identified using biochemical tests and polymerase chain reaction (PCR). Phenotypic resistance was determined using the disk diffusion method. Selected resistance and virulence genes were investigated using PCR. Clonality among the isolates was determined using the repetitive element sequence-PCR. In all, 333 presumptive staphylococcal isolates were obtained, with 141/333 (42.3%) identified as staphylococci biochemically. Ninety-seven (97; 68.8%) were confirmed as S. aureus using PCR, 52.6% of which were identified as methicillin-resistant S. aureus (MRSA) through the mecA gene. All the 97 S. aureus isolates (100%) were resistant to at least one of the antibiotics tested, with the highest resistance observed against erythromycin and clindamycin (84.50% each), and the lowest observed against amikacin (2.10%); 82.47% (80/97) were multidrug-resistant with an average multiple antibiotic resistance index of 0.50. Most of the phenotypically resistant isolates carried at least one of the corresponding resistance genes tested, ermC being the most detected. hla was the most detected virulence gene (38.14%) and etb was the least (1.03%). Genetic fingerprinting revealed diverse MRSA isolates along the farm-to-fork continuum, the major REP types consisting of isolates from different sources suggesting a potential transmission along the continuum. Resistance to antibiotics used as growth promoters was evidenced by the high prevalence of MDR isolates with elevated multiple antibiotic resistance indices >0.2, specifically at the farm, indicating exposure to high antibiotic use environments, necessitating antibiotic stewardship and proper infection control measures in pig husbandry and intensive pig production.

15.
Pathogens ; 10(4)2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33917115

RESUMO

Campylobacter spp. are among the leading foodborne pathogens, causing campylobacteriosis, a zoonotic infection that results in bacterial gastroenteritis and diarrheal disease in animals and humans. This study investigated the molecular epidemiology of antibiotic-resistant Campylobacter spp. isolated across the farm-to-fork-continuum in an intensive pig production system in South Africa. Following ethical approval, samples were collected over sixteen weeks from selected critical points (farm, transport, abattoir, and retail) using a farm-to-fork sampling approach according to WHO-AGISAR guidelines. Overall, 520 samples were investigated for the presence of Campylobacter spp., which were putatively identified using selective media with identity and speciation confirmed by polymerase chain reaction (PCR) of specific genes. Resistance profiles were ascertained by the Kirby-Bauer disk diffusion method. Antibiotic resistance and virulence genes were identified using PCR and DNA sequencing. Clonal relatedness was determined using ERIC-PCR. Altogether, 378/520 (72.7%) samples were positive for Campylobacter spp., with Campylobacter coli being the predominant species (73.3%), followed by Campylobacter jejuni (17.7%); 8.9% of the isolates were classified as "other spp". Relatively high resistance was observed in C. coli and C. jejuni to erythromycin (89% and 99%), streptomycin (87% and 93%), tetracycline (82% and 96%), ampicillin (69% and 85%), and ciprofloxacin (53% and 67%), respectively. Multidrug resistance (MDR) was noted in 330 of the 378 (87.3%) isolates. The antibiotic resistance genes observed were tetO (74.6%), blaOXA-61 (2.9%), and cmeB (11.1%), accounting for the resistance to tetracycline and ampicillin. The membrane efflux pump (cmeB), conferring resistance to multiple antibiotics, was also detected in most resistant isolates. Chromosomal mutations in gyrA (Thr-86-Ile) and 23S rRNA (A2075G and A2074C) genes, conferring quinolone and erythromycin resistance, respectively, were also found. Of the virulence genes tested, ciaB, dnaJ, pldA, cdtA, cdtB, cdtC, and cadF were detected in 48.6%, 61.1%, 17.4%, 67.4%, 19.3%, 51%, and 5% of all Campylobacter isolates, respectively. Clonal analysis revealed that isolates along the continuum were highly diverse, with isolates from the same sampling points belonging to the same major ERIC-types. The study showed relatively high resistance to antibiotics commonly used in intensive pig production in South Africa with some evidence, albeit minimal, of transmission across the farm-to-fork continuum. This, together with the virulence profiles present in Campylobacter spp., presents a challenge to food safety and a potential risk to human health, necessitating routine surveillance, antibiotic stewardship, and comprehensive biosecurity in intensive pig production.

16.
Microorganisms ; 9(5)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919134

RESUMO

The current study investigated the impact of chicken litter application on the abundance of multidrug-resistant Enterococcus spp. in agricultural soil. Soil samples were collected from five different strategic places on a sugarcane farm before and after manure application for four months. Chicken litter samples were also collected. Enterococci were enumerated using the Enterolert®/Quanti-Tray 2000® system and confirm and differentiated into species using real-time PCR. The antibiotic susceptibility profile of the isolates was determined using the disk diffusion method following the European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines. The overall mean bacterial count was significantly higher (p < 0.05) in manure-amended soil (3.87 × 107 MPN/g) than unamended soil (2.89 × 107 MPN/g). Eight hundred and thirty-five enterococci (680 from soil and 155 from litter) were isolated, with E. casseliflavus being the most prevalent species (469; 56.2%) and E. gallinarum being the least (16; 1.2%). Approximately 56% of all the isolates were resistant to at least one antibiotic tested, with the highest resistance observed against tetracycline (33%) and the lowest against chloramphenicol (0.1%); 17% of E. faecium were resistant to quinupristin-dalfopristin. Additionally, 27.9% (130/466) of the isolates were multidrug-resistant, with litter-amended soil harbouring more multidrug-resistant (MDR) isolates (67.7%; 88/130) than unamended soil (10.0%; 13/130). All isolates were susceptible to tigecycline, linezolid and gentamicin. About 7% of the isolates had a multiple antimicrobial resistance index > 0.2, indicative of high antibiotic exposure. Although organic fertilizers are regarded as eco-friendly compared to chemical fertilizers for improving soil fertility, the application of untreated animal manure could promote the accumulation of antibiotics and their residues and antibiotic-resistant bacteria in the soil, creating an environmental reservoir of antimicrobial resistance, with potential human and environmental health risks.

17.
Trop Med Infect Dis ; 6(2)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33925030

RESUMO

Although numerous studies have investigated diarrhoea aetiology in many sub-Saharan African countries, recent data on Shigella species' involvement in community-acquired acute diarrhoea (CA-AD) in Malawi are scarce. This study investigated the incidence, antibiotic susceptibility profile, genotypic characteristics, and clonal relationships of Shigella flexneri among 243 patients presenting with acute diarrhoea at a District Hospital in Lilongwe, Malawi. Shigella spp. were isolated and identified using standard microbiological and serological methods and confirmed by identifying the ipaH gene using real-time polymerase chain reaction. The isolates' antibiotic susceptibility to 20 antibiotics was determined using the VITEK 2 system according to EUCAST guidelines. Genes conferring resistance to sulfamethoxazole (sul1, sul2 and sul3), trimethoprim (dfrA1, dfrA12 and dfrA17) and ampicillin (oxa-1 and oxa-2), and virulence genes (ipaBCD, sat, ial, virA, sen, set1A and set1B) were detected by real-time PCR. Clonal relatedness was assessed using ERIC-PCR. Thirty-four Shigella flexneri isolates were isolated (an overall incidence of 14.0%). All the isolates were fully resistant to sulfamethoxazole/trimethoprim (100%) and ampicillin (100%) but susceptible to the other antibiotics tested. The sul1 (79%), sul2 (79%), sul3 (47%), dfrA12 (71%) and dfrA17 (56%) sulfonamide and trimethoprim resistance genes were identified; Oxa-1, oxa-2 and dfrA1 were not detected. The virulence genes ipaBCD (85%), sat (85%), ial (82%), virA (76%), sen (71%), stx (71%), set1A (26%) and set1B (18%) were detected. ERIC-PCR profiling revealed that the Shigella isolates were genetically distinct and clonally unrelated, indicating the potential involvement of genetically distinct S. flexneri in CA-AD in Malawi. The high percentage resistance to ampicillin and sulfamethoxazole/trimethoprim and the presence of several virulence determinants in these isolates emphasises a need for continuous molecular surveillance studies to inform preventive measures and management of Shigella-associated diarrhoeal infections in Malawi.

18.
Trans R Soc Trop Med Hyg ; 115(10): 1122-1129, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33772597

RESUMO

Antibiotic use in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) patients during the COVID-19 pandemic has exceeded the incidence of bacterial coinfections and secondary infections, suggesting inappropriate and excessive prescribing. Even in settings with established antimicrobial stewardship (AMS) programmes, there were weaknesses exposed regarding appropriate antibiotic use in the context of the pandemic. Moreover, antimicrobial resistance (AMR) surveillance and AMS have been deprioritised with diversion of health system resources to the pandemic response. This experience highlights deficiencies in AMR containment and mitigation strategies that require urgent attention from clinical and scientific communities. These include the need to implement diagnostic stewardship to assess the global incidence of coinfections and secondary infections in COVID-19 patients, including those by multidrug-resistant pathogens, to identify patients most likely to benefit from antibiotic treatment and identify when antibiotics can be safely withheld, de-escalated or discontinued. Long-term global surveillance of clinical and societal antibiotic use and resistance trends is required to prepare for subsequent changes in AMR epidemiology, while ensuring uninterrupted supply chains and preventing drug shortages and stock outs. These interventions present implementation challenges in resource-constrained settings, making a case for implementation research on AMR. Knowledge and support for these practices will come from internationally coordinated, targeted research on AMR, supporting the preparation for future challenges from emerging AMR in the context of the current COVID-19 pandemic or future pandemics.


Assuntos
COVID-19 , Pandemias , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana , Humanos , Pandemias/prevenção & controle , SARS-CoV-2
19.
Antibiotics (Basel) ; 10(2)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670659

RESUMO

Coagulase-negative staphylococci (CoNS) are increasingly associated with nosocomial infections, especially among the immunocompromised and those with invasive medical devices, posing a significant concern. We report on clinical multidrug-resistant CoNS from the uMgungundlovu District, KwaZulu-Natal Province, South Africa, as emerging pathogens. One hundred and thirty presumptive CoNS were obtained from blood cultures. Culture, biochemical tests, and the Staphaurex™ Latex Agglutination Test were used for the initial identification of CoNS isolates; confirmation and speciation were undertaken by the VITEK 2 system. Susceptibilities of isolates against a panel of 20 antibiotics were determined using the Kirby-Bauer disk diffusion method, and the multiple antibiotic resistance (MAR) indices of the isolates were determined. The polymerase chain reaction (PCR) was used to amplify the mecA gene to confirm methicillin resistance. Overall, 89/130 presumptive CoNS isolates were confirmed as CoNS by the VITEK 2 system. Of these, 68 (76.4%) isolates were putatively methicillin-resistant by the phenotypic cefoxitin screen test and 63 (92.6%) were mecA positive. Staphylococcus epidermidis (19.1%), S. hominis ssp. hominis (15.7%), and S. haemolyticus (16.9%) were the most common CoNS species. Isolates showed high percentage resistance against penicillin (100.0%), erythromycin (74.2%), and azithromycin (74.2%) while displaying high susceptibilities to linezolid (95.5%), gentamicin (95.5%), and tigecycline (94.4%). Multidrug resistance (MDR) was observed in 76.4% of isolates. MAR index calculation revealed 71.9% of isolates with MAR index >0.2 and 20.2% >0.5. Isolates with the highest MAR indices (0.7 and 0.8) were recovered from the neonatal intensive care unit. Fifty-one MDR antibiograms were observed. The high prevalence of methicillin resistance and multidrug resistance in several species of CoNS necessitates surveillance of this emerging pathogen, currently considered a contaminant of microbial cultures.

20.
Front Vet Sci ; 8: 636715, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33718473

RESUMO

There is limited information on the comparative genomic diversity of antibiotic-resistant Escherichia coli from wastewater. We sought to characterize environmental E. coli isolates belonging to various pathotypes obtained from a wastewater treatment plant (WWTP) and its receiving waters using whole-genome sequencing (WGS) and an array of bioinformatics tools to elucidate the resistomes, virulomes, mobilomes, clonality, and phylogenies. Twelve multidrug-resistant (MDR) diarrheagenic E. coli isolates were obtained from the final effluent of a WWTP, and the receiving river upstream and downstream of the WWTP were sequenced on an Illumina MiSeq machine. The multilocus sequence typing (MLST) analysis revealed that multiple sequence types (STs), the most common of which was ST69 (n = 4) and ST10 (n = 2), followed by singletons belonging to ST372, ST101, ST569, ST218, and ST200. One isolate was assigned to a novel ST ST11351. A total of 66.7% isolates were positive for ß-lactamase genes with 58.3% harboring the bla TEM1B gene and a single isolate the blaCTX-M-14 and blaCTX-M-55 extended-spectrum ß-lactamase (ESBL) genes. One isolate was positive for the mcr-9 mobilized colistin resistance gene. Most antibiotic resistance genes (ARGs) were associated with mobile genetic support: class 1 integrons (In22, In54, In191, and In369), insertion sequences (ISs), and/or transposons (Tn402 or Tn21). A total of 31 virulence genes were identified across the study isolates, including those responsible for adhesion (lpfA, iha, and aggR), immunity (air, gad, and iss), and toxins (senB, vat, astA, and sat). The virulence genes were mostly associated with IS (IS1, IS3, IS91, IS66, IS630, and IS481) or prophages. Co-resistance to heavy metal/biocide, antibiotics were evident in several isolates. The phylogenomic analysis with South African E. coli isolates from different sources (animals, birds, and humans) revealed that isolates from this study mostly clustered with clinical isolates. Phylogenetics linked with metadata revealed that isolates did not cluster according to source but according to ST. The occurrence of pathogenic and MDR isolates in the WWTP effluent and the associated river is a public health concern.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...