Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Neurosci ; 40(1): 22-36, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31896561

RESUMO

In many species, vocal communication is essential for coordinating social behaviors including courtship, mating, parenting, rivalry, and alarm signaling. Effective communication requires accurate production, detection, and classification of signals, as well as selection of socially appropriate responses. Understanding how signals are generated and how acoustic signals are perceived is key to understanding the neurobiology of social behaviors. Here we review our long-standing research program focused on Xenopus, a frog genus which has provided valuable insights into the mechanisms and evolution of vertebrate social behaviors. In Xenopus laevis, vocal signals differ between the sexes, through development, and across the genus, reflecting evolutionary divergence in sensory and motor circuits that can be interrogated mechanistically. Using two ex vivo preparations, the isolated brain and vocal organ, we have identified essential components of the vocal production system: the sexually differentiated larynx at the periphery, and the hindbrain vocal central pattern generator (CPG) centrally, that produce sex- and species-characteristic sound pulse frequencies and temporal patterns, respectively. Within the hindbrain, we have described how intrinsic membrane properties of neurons in the vocal CPG generate species-specific vocal patterns, how vocal nuclei are connected to generate vocal patterns, as well as the roles of neurotransmitters and neuromodulators in activating the circuit. For sensorimotor integration, we identified a key forebrain node that links auditory and vocal production circuits to match socially appropriate vocal responses to acoustic features of male and female calls. The availability of a well supported phylogeny as well as reference genomes from several species now support analysis of the genetic architecture and the evolutionary divergence of neural circuits for vocal communication. Xenopus thus provides a vertebrate model in which to study vocal communication at many levels, from physiology, to behavior, and from development to evolution. As one of the most comprehensively studied phylogenetic groups within vertebrate vocal communication systems, Xenopus provides insights that can inform social communication across phyla.

3.
Mol Biol Evol ; 37(3): 799-810, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31710681

RESUMO

Phenotypic invariance-the outcome of purifying selection-is a hallmark of biological importance. However, invariant phenotypes might be controlled by diverged genetic systems in different species. Here, we explore how an important and invariant phenotype-the development of sexually differentiated individuals-is controlled in over two dozen species in the frog family Pipidae. We uncovered evidence in different species for 1) an ancestral W chromosome that is not found in many females and is found in some males, 2) independent losses and 3) autosomal segregation of this W chromosome, 4) changes in male versus female heterogamy, and 5) substantial variation among species in recombination suppression on sex chromosomes. We further provide evidence of, and evolutionary context for, the origins of at least seven distinct systems for regulating sex determination among three closely related genera. These systems are distinct in their genomic locations, evolutionary origins, and/or male versus female heterogamy. Our findings demonstrate that the developmental control of sexual differentiation changed via loss, sidelining, and empowerment of a mechanistically influential gene, and offer insights into novel factors that impinge on the diverse evolutionary fates of sex chromosomes.

4.
PLoS One ; 14(9): e0220892, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31509539

RESUMO

A comprehensive, accurate, and revisable alpha taxonomy is crucial for biodiversity studies, but is challenging when data from reference specimens are difficult to collect or observe. However, recent technological advances can overcome some of these challenges. To illustrate this, we used modern approaches to tackle a centuries-old taxonomic enigma presented by Fraser's Clawed Frog, Xenopus fraseri, including whether X. fraseri is different from other species, and if so, where it is situated geographically and phylogenetically. To facilitate these inferences, we used high-resolution techniques to examine morphological variation, and we generated and analyzed complete mitochondrial genome sequences from all Xenopus species, including >150-year-old type specimens. Our results demonstrate that X. fraseri is indeed distinct from other species, firmly place this species within a phylogenetic context, and identify its minimal geographic distribution in northern Ghana and northern Cameroon. These data also permit novel phylogenetic resolution into this intensively studied and biomedically important group. Xenopus fraseri was formerly thought to be a rainforest endemic placed alongside species in the amieti species group; in fact this species occurs in arid habitat on the borderlands of the Sahel, and is the smallest member of the muelleri species group. This study illustrates that the taxonomic enigma of Fraser's frog was a combined consequence of sparse collection records, interspecies conservation and intraspecific polymorphism in external anatomy, and type specimens with unusual morphology.

5.
Evol Anthropol ; 28(4): 189-209, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31222847

RESUMO

During the late Pleistocene, isolated lineages of hominins exchanged genes thus influencing genomic variation in humans in both the past and present. However, the dynamics of this genetic exchange and associated phenotypic consequences through time remain poorly understood. Gene exchange across divergent lineages can result in myriad outcomes arising from these dynamics and the environmental conditions under which it occurs. Here we draw from our collective research across various organisms, illustrating some of the ways in which gene exchange can structure genomic/phenotypic diversity within/among species. We present a range of examples relevant to questions about the evolution of hominins. These examples are not meant to be exhaustive, but rather illustrative of the diverse evolutionary causes/consequences of hybridization, highlighting potential drivers of human evolution in the context of hybridization including: influences on adaptive evolution, climate change, developmental systems, sex-differences in behavior, Haldane's rule and the large X-effect, and transgressive phenotypic variation.


Assuntos
Evolução Biológica , Hominidae , Hibridização Genética/genética , Animais , Antropologia Física , Feminino , Genoma Humano/genética , Hominidae/anatomia & histologia , Hominidae/genética , Humanos , Masculino , Camundongos , Homem de Neandertal/anatomia & histologia , Homem de Neandertal/genética , Fenótipo , Crânio/anatomia & histologia
6.
J Evol Biol ; 31(12): 1945-1958, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30341989

RESUMO

Whole genome duplication (WGD), the doubling of the nuclear DNA of a species, contributes to biological innovation by creating genetic redundancy. One mode of WGD is allopolyploidization, wherein each genome from two ancestral species becomes a 'subgenome' of a polyploid descendant species. The evolutionary trajectory of a duplicated gene that arises from WGD is influenced both by natural selection that may favour redundant, new or partitioned functions, and by gene silencing (pseudogenization). Here, we explored how these two phenomena varied over time and within allopolyploid genomes in several allotetraploid clawed frog species (Xenopus). Our analysis demonstrates that, across these polyploid genomes, purifying selection was greatly relaxed compared to a diploid outgroup, was asymmetric between each subgenome, and that coding regions are shorter in the subgenome with more relaxed purifying selection. As well, we found that the rate of gene loss was higher in the subgenome under weaker purifying selection and that this rate has remained relatively consistent over time after WGD. Our findings provide perspective from recently evolved vertebrates on the evolutionary forces that likely shape allopolyploid genomes on other branches of the tree of life.


Assuntos
Evolução Molecular , Poliploidia , Xenopus/genética , Animais , Genoma , Modelos Genéticos , Filogenia , Seleção Genética , Fatores de Tempo
8.
Proc Biol Sci ; 285(1876)2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29643207

RESUMO

The high degree of endemism on Sulawesi has previously been suggested to have vicariant origins, dating back to 40 Ma. Recent studies, however, suggest that much of Sulawesi's fauna assembled over the last 15 Myr. Here, we test the hypothesis that more recent uplift of previously submerged portions of land on Sulawesi promoted diversification and that much of its faunal assemblage is much younger than the island itself. To do so, we combined palaeogeographical reconstructions with genetic and morphometric datasets derived from Sulawesi's three largest mammals: the babirusa, anoa and Sulawesi warty pig. Our results indicate that although these species most likely colonized the area that is now Sulawesi at different times (14 Ma to 2-3 Ma), they experienced an almost synchronous expansion from the central part of the island. Geological reconstructions indicate that this area was above sea level for most of the last 4 Myr, unlike most parts of the island. We conclude that emergence of land on Sulawesi (approx. 1-2 Myr) may have allowed species to expand synchronously. Altogether, our results indicate that the establishment of the highly endemic faunal assemblage on Sulawesi was driven by geological events over the last few million years.


Assuntos
Búfalos/classificação , Especiação Genética , Fenômenos Geológicos , Suínos/classificação , Animais , Sequência de Bases , Búfalos/genética , DNA Mitocondrial , Geografia , Indonésia , Ilhas , Repetições de Microssatélites , Filogenia , Filogeografia , Suínos/genética
9.
Genome Biol Evol ; 10(3): 742-755, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29608717

RESUMO

There exists extraordinary variation among species in the degree and nature of sex chromosome divergence. However, much of our knowledge about sex chromosomes is based on comparisons between deeply diverged species with different ancestral sex chromosomes, making it difficult to establish how fast and why sex chromosomes acquire variable levels of divergence. To address this problem, we studied sex chromosome evolution in two species of African clawed frog (Xenopus), both of whom acquired novel systems for sex determination from a recent common ancestor, and both of whom have female (ZW/ZZ) heterogamy. Derived sex chromosomes of one species, X. laevis, have a small region of suppressed recombination that surrounds the sex determining locus, and have remained this way for millions of years. In the other species, X. borealis, a younger sex chromosome system exists on a different pair of chromosomes, but the region of suppressed recombination surrounding an unidentified sex determining gene is vast, spanning almost half of the sex chromosomes. Differences between these sex chromosome systems are also apparent in the extent of nucleotide divergence between the sex chromosomes carried by females. Our analyses also indicate that in autosomes of both of these species, recombination during oogenesis occurs more frequently and in different genomic locations than during spermatogenesis. These results demonstrate that new sex chromosomes can assume radically different evolutionary trajectories, with far-reaching genomic consequences. They also suggest that in some instances the origin of new triggers for sex determination may be coupled with rapid evolution sex chromosomes, including recombination suppression of large genomic regions.


Assuntos
Evolução Biológica , Cromossomos Sexuais/genética , Processos de Determinação Sexual/genética , Animais , Feminino , Variação Genética/genética , Genoma , Masculino , Xenopus laevis/genética , Xenopus laevis/crescimento & desenvolvimento
10.
R Soc Open Sci ; 4(10): 170351, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29134059

RESUMO

Many genera of terrestrial vertebrates diversified exclusively on one or the other side of Wallace's Line, which lies between Borneo and Sulawesi islands in Southeast Asia, and demarcates one of the sharpest biogeographic transition zones in the world. Macaque monkeys are unusual among vertebrate genera in that they are distributed on both sides of Wallace's Line, raising the question of whether dispersal across this barrier was an evolutionary one-off or a more protracted exchange-and if the latter, what were the genomic consequences. To explore the nature of speciation over the edge of this biogeographic divide, we used genomic data to test for evidence of gene flow between macaque species across Wallace's Line after macaques colonized Sulawesi. We recovered evidence of post-colonization gene flow, most prominently on the X chromosome. These results are consistent with the proposal that gene flow is a pervasive component of speciation-even when barriers to gene flow seem almost insurmountable.

11.
Genome Biol Evol ; 9(6): 1711-1724, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28854639

RESUMO

The genome of the red vizcacha rat (Rodentia, Octodontidae, Tympanoctomys barrerae) is the largest of all mammals, and about double the size of their close relative, the mountain vizcacha rat Octomys mimax, even though the lineages that gave rise to these species diverged from each other only about 5 Ma. The mechanism for this rapid genome expansion is controversial, and hypothesized to be a consequence of whole genome duplication or accumulation of repetitive elements. To test these alternative but nonexclusive hypotheses, we gathered and evaluated evidence from whole transcriptome and whole genome sequences of T. barrerae and O. mimax. We recovered support for genome expansion due to accumulation of a diverse assemblage of repetitive elements, which represent about one half and one fifth of the genomes of T. barrerae and O. mimax, respectively, but we found no strong signal of whole genome duplication. In both species, repetitive sequences were rare in transcribed regions as compared with the rest of the genome, and mostly had no close match to annotated repetitive sequences from other rodents. These findings raise new questions about the genomic dynamics of these repetitive elements, their connection to widespread chromosomal fissions that occurred in the T. barrerae ancestor, and their fitness effects-including during the evolution of hypersaline dietary tolerance in T. barrerae.


Assuntos
Evolução Molecular , Genoma , Roedores/genética , Animais , Perfilação da Expressão Gênica , Filogenia , Ratos , Sequências Repetitivas de Ácido Nucleico , Roedores/classificação
12.
PLoS One ; 12(5): e0177087, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28545147

RESUMO

Whole genome duplication (WGD) generates new species and genomic redundancy. In African clawed frogs of the genus Xenopus, this phenomenon has been especially important in that (i) all but one extant species are polyploid and (ii) whole genome sequences of some species provide an evidence for genomic rearrangements prior to or after WGD. Within Xenopus in the subgenus Silurana, at least one allotetraploidization event gave rise to three extant tetraploid (2n = 4x = 40) species-Xenopus mellotropicalis, X. epitropicalis, and X. calcaratus-but it is not yet clear the degree to which these tetraploid genomes experienced rearrangements prior to or after allotetraploidization. To explore genome evolution during diversification of these species, we performed cytogenetic analyses of X. mellotropicalis, including assessment of the localization of nucleolar organizer region, chromosome banding, and determination of the p/q arm ratios for each chromosome pair. We compared these data to a previously characterized karyotype of X. epitropicalis. Morphometric, C-banding and Zoo-FISH data support a previously hypothesized common allotetraploid predecessor of these species. Zoo-FISH with whole chromosome painting (WCP) probes derived from the closely related diploid species X. tropicalis confirmed the existence of ten chromosomal quartets in X. mellotropicalis somatic cells, as expected by its ploidy level and tetraploid ancestry. The p/q arm ratio of chromosome 2a was found to be substantially different between X. mellotropicalis (0.81) and X. epitropicalis (0.67), but no substantial difference between these two species was detected in this ratio for the homoeologous chromosome pair 2b, or for other chromosome pairs. Additionally, we identified variation between these two species in the locations of a heterochromatic block on chromosome pair 2a. These results are consistent with a dynamic history of genomic rearrangements before and/or after genome duplication, a surprising finding given the otherwise relatively conserved genomic structure of most frogs.


Assuntos
Cromossomos , Hibridização in Situ Fluorescente/métodos , Xenopus/genética , Animais , Evolução Biológica , Bandeamento Cromossômico , Sondas de DNA , DNA Ribossômico , Tetraploidia , Xenopus/fisiologia
13.
Sci Rep ; 7(1): 1091, 2017 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-28439068

RESUMO

The Cape platanna, Xenopus gilli, an endangered frog, hybridizes with the African clawed frog, X. laevis, in South Africa. Estimates of the extent of gene flow between these species range from pervasive to rare. Efforts have been made in the last 30 years to minimize hybridization between these two species in the west population of X. gilli, but not the east populations. To further explore the impact of hybridization and the efforts to minimize it, we examined molecular variation in one mitochondrial and 13 nuclear genes in genetic samples collected recently (2013) and also over two decades ago (1994). Despite the presence of F 1 hybrids, none of the genomic regions we surveyed had evidence of gene flow between these species, indicating a lack of extensive introgression. Additionally we found no significant effect of sampling time on genetic diversity of populations of each species. Thus, we speculate that F 1 hybrids have low fitness and are not backcrossing with the parental species to an appreciable degree. Within X. gilli, evidence for gene flow was recovered between eastern and western populations, a finding that has implications for conservation management of this species and its threatened habitat.


Assuntos
Quimera/genética , Variação Genética , Xenopus/genética , Animais , Fluxo Gênico , Genômica , África do Sul
14.
Genesis ; 55(1-2)2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28095617

RESUMO

The vertebrate hindbrain includes neural circuits that govern essential functions including breathing, blood pressure and heart rate. Hindbrain circuits also participate in generating rhythmic motor patterns for vocalization. In most tetrapods, sound production is powered by expiration and the circuitry underlying vocalization and respiration must be linked. Perception and arousal are also linked; acoustic features of social communication sounds-for example, a baby's cry-can drive autonomic responses. The close links between autonomic functions that are essential for life and vocal expression have been a major in vivo experimental challenge. Xenopus provides an opportunity to address this challenge using an ex vivo preparation: an isolated brain that generates vocal and breathing patterns. The isolated brain allows identification and manipulation of hindbrain vocal circuits as well as their activation by forebrain circuits that receive sensory input, initiate motor patterns and control arousal. Advances in imaging technologies, coupled to the production of Xenopus lines expressing genetically encoded calcium sensors, provide powerful tools for imaging neuronal patterns in the entire fictively behaving brain, a goal of the BRAIN Initiative. Comparisons of neural circuit activity across species (comparative neuromics) with distinctive vocal patterns can identify conserved features, and thereby reveal essential functional components.


Assuntos
Prosencéfalo/fisiologia , Rombencéfalo/fisiologia , Vocalização Animal/fisiologia , Xenopus laevis/fisiologia , Animais , Expiração/fisiologia , Técnicas de Cultura de Órgãos
15.
G3 (Bethesda) ; 6(11): 3625-3633, 2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27605520

RESUMO

Sexual differentiation is fundamentally important for reproduction, yet the genetic triggers of this developmental process can vary, even between closely related species. Recent studies have uncovered, for example, variation in the genetic triggers for sexual differentiation within and between species of African clawed frogs (genus Xenopus). Here, we extend these discoveries by demonstrating that yet another sex determination system exists in Xenopus, specifically in the species Xenopus borealis This system evolved recently in an ancestor of X. borealis that had the same sex determination system as X. laevis, a system which itself is newly evolved. Strikingly, the genomic region carrying the sex determination factor in X. borealis is homologous to that of therian mammals, including humans. Our results offer insights into how the genetic underpinnings of conserved phenotypes evolve, and suggest an important role for cooption of genetic building blocks with conserved developmental roles.

16.
BMC Genomics ; 17: 277, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27044312

RESUMO

BACKGROUND: Cytomegaloviruses belong to a large, ancient, genus of DNA viruses comprised of a wide array of species-specific strains that occur in diverse array of hosts. METHODS: In this study we sequenced the ~217 Kb genome of a cytomegalovirus isolated from a Mauritius cynomolgus macaque, CyCMV Mauritius, and compared it to previously sequenced cytomegaloviruses from a cynomolgus macaque of Filipino origin (CyCMV Ottawa) and two from Indian rhesus macaques (RhCMV 180.92 and RhCMV 68-1). RESULTS: Though more closely related to CyCMV Ottawa, CyCMV Mauritius is less genetically distant from both RhCMV strains than is CyCMV Ottawa. Several individual genes, including homologues of CMV genes RL11B, UL123, UL83b, UL84 and a homologue of mammalian COX-2, show a closer relationship between homologues of CyCMV Mauritius and the RhCMVs than between homologues of CyCMV Mauritius and CyCMV Ottawa. A broader phylogenetic analysis of 12 CMV strains from eight species recovers evolutionary relationships among viral strains that mirror those amongst the host species, further demonstrating co-evolution of host and virus. CONCLUSIONS: Phylogenetic analyses of rhesus and cynomolgus macaque CMV genome sequences demonstrate co-speciation of the virus and host.


Assuntos
Evolução Biológica , Citomegalovirus/classificação , Genoma Viral , Macaca fascicularis/virologia , Macaca mulatta/virologia , Filogenia , Animais , Citomegalovirus/genética , Citomegalovirus/isolamento & purificação , DNA Viral/genética , Análise de Sequência de DNA , Especificidade da Espécie
17.
BMC Genomics ; 17: 157, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26925773

RESUMO

BACKGROUND: The primate Y chromosome is distinguished by a lack of inter-chromosomal recombination along most of its length, extensive gene loss, and a prevalence of repetitive elements. A group of genes on the male-specific portion of the Y chromosome known as the "ampliconic genes" are present in multiple copies that are sometimes part of palindromes, and that undergo a form of intra-chromosomal recombination called gene conversion, wherein the nucleotides of one copy are homogenized by those of another. With the aim of further understanding gene family evolution of these genes, we collected nucleotide sequence and gene copy number information for several species of papionin monkey. We then tested for evidence of gene conversion, and developed a novel statistical framework to evaluate alternative models of gene family evolution using our data combined with other information from a human, a chimpanzee, and a rhesus macaque. RESULTS: Our results (i) recovered evidence for several novel examples of gene conversion in papionin monkeys and indicate that (ii) ampliconic gene families evolve faster than autosomal gene families and than single-copy genes on the Y chromosome and that (iii) Y-linked singleton and autosomal gene families evolved faster in humans and chimps than they do in the other Old World Monkey lineages we studied. CONCLUSIONS: Rapid evolution of ampliconic genes cannot be attributed solely to residence on the Y chromosome, nor to variation between primate lineages in the rate of gene family evolution. Instead other factors, such as natural selection and gene conversion, appear to play a role in driving temporal and genomic evolutionary heterogeneity in primate gene families.


Assuntos
Cromossomos Humanos Y/genética , Evolução Molecular , Conversão Gênica , Dosagem de Genes , Família Multigênica , Cromossomo Y/genética , Animais , Sequência de Bases , Humanos , Macaca mulatta/genética , Masculino , Mandrillus/genética , Modelos Genéticos , Pan troglodytes/genética , Papio anubis/genética , Filogenia , Análise de Sequência de DNA
18.
PLoS One ; 10(12): e0142823, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26672747

RESUMO

African clawed frogs, genus Xenopus, are extraordinary among vertebrates in the diversity of their polyploid species and the high number of independent polyploidization events that occurred during their diversification. Here we update current understanding of the evolutionary history of this group and describe six new species from west and central sub-Saharan Africa, including four tetraploids and two dodecaploids. We provide information on molecular variation, morphology, karyotypes, vocalizations, and estimated geographic ranges, which support the distinctiveness of these new species. We resurrect Xenopus calcaratus from synonymy of Xenopus tropicalis and refer populations from Bioko Island and coastal Cameroon (near Mt. Cameroon) to this species. To facilitate comparisons to the new species, we also provide comments on the type specimens, morphology, and distributions of X. epitropicalis, X. tropicalis, and X. fraseri. This includes significantly restricted application of the names X. fraseri and X. epitropicalis, the first of which we argue is known definitively only from type specimens and possibly one other specimen. Inferring the evolutionary histories of these new species allows refinement of species groups within Xenopus and leads to our recognition of two subgenera (Xenopus and Silurana) and three species groups within the subgenus Xenopus (amieti, laevis, and muelleri species groups).


Assuntos
Poliploidia , Xenopus/anatomia & histologia , Xenopus/genética , África Central , África Ocidental , Animais , Evolução Biológica , Código de Barras de DNA Taxonômico , DNA Mitocondrial , Haplótipos , Hibridização Genética , Cariótipo , Fenótipo , Filogenia , Filogeografia , Xenopus/classificação
19.
Cytogenet Genome Res ; 145(3-4): 185-6, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26202694
20.
Cytogenet Genome Res ; 145(3-4): 243-52, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26066830

RESUMO

Genome duplication creates redundancy in proteins and their interaction networks, and subsequent smaller-scale gene duplication can further amplify genetic redundancy. Mutations then lead to the loss, maintenance or functional divergence of duplicated genes. Genome duplication occurred many times in African clawed frogs (genus Xenopus), and almost all extant species in this group evolved from a polyploid ancestor. To better understand the nature of selective constraints in a polyploid genome, we examined molecular polymorphism and divergence of duplicates and single-copy genes in 2 tetraploid African clawed frog species, Xenopus laevis and X. victorianus. We found that molecular polymorphism in the coding regions of putative duplicated genes was higher than in singletons, but not significantly so. Our findings also suggest that transcriptome evolution in polyploids is influenced by variation in the genome-wide mutation rate, and do not reject the hypothesis that gene dosage balance is also important.


Assuntos
Evolução Molecular , Duplicação Gênica , Polimorfismo Genético/genética , Tetraploidia , Xenopus/genética , Animais , Mapeamento Cromossômico , Dosagem de Genes , Modelos Genéticos , Fases de Leitura Aberta/genética , Filogenia , Regiões não Traduzidas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA