Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lancet Planet Health ; 5(7): e479-e486, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34245718

RESUMO

Record climate extremes are reducing urban liveability, compounding inequality, and threatening infrastructure. Adaptation measures that integrate technological, nature-based, and social solutions can provide multiple co-benefits to address complex socioecological issues in cities while increasing resilience to potential impacts. However, there remain many challenges to developing and implementing integrated solutions. In this Viewpoint, we consider the value of integrating across the three solution sets, the challenges and potential enablers for integrating solution sets, and present examples of challenges and adopted solutions in three cities with different urban contexts and climates (Freiburg, Germany; Durban, South Africa; and Singapore). We conclude with a discussion of research directions and provide a road map to identify the actions that enable successful implementation of integrated climate solutions. We highlight the need for more systematic research that targets enabling environments for integration; achieving integrated solutions in different contexts to avoid maladaptation; simultaneously improving liveability, sustainability, and equality; and replicating via transfer and scale-up of local solutions. Cities in systematically disadvantaged countries (sometimes referred to as the Global South) are central to future urban development and must be prioritised. Helping decision makers and communities understand the potential opportunities associated with integrated solutions for climate change will encourage urgent and deliberate strides towards adapting cities to the dynamic climate reality.


Assuntos
Mudança Climática , Cidades , Previsões , Alemanha , África do Sul
2.
Proc Natl Acad Sci U S A ; 117(34): 20511-20519, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32788353

RESUMO

Examining linkages among multiple sustainable development outcomes is key for understanding sustainability transitions. Yet rigorous evidence on social and environmental outcomes of sustainable development policies remains scarce. We conduct a national-level analysis of Brazil's flagship social protection program, Zero Hunger (ZH), which aims to reduce food insecurity and poverty. Using data from rural municipalities across Brazil and quasi-experimental causal inference techniques, we assess relationships between social protection investment and outcomes related to sustainable development goals (SDGs): "no poverty" (SDG 1), "zero hunger" (SDG 2), and "health and well being" (SDG 3). We also assess potential perverse outcomes arising from agricultural development impacting "climate action" (SDG 13) and "life on land" (SDG 15) via clearance of natural vegetation. Despite increasing daily per capita protein and kilocalorie production, summed ZH investment did not alleviate child malnutrition or infant mortality and negligibly influenced multidimensional poverty. Higher investment increased natural vegetation cover in some biomes but increased losses in the Cerrado and especially the Pampa. Effects varied substantially across subprograms. Conditional cash transfer (Bolsa Familia [BF]) was mainly associated with nonbeneficial impacts but increased protein production and improved educational participation in some states. The National Program to Strengthen Family Farming (PRONAF) was typically associated with increased food production (protein and calories), multidimensional poverty alleviation, and changes in natural vegetation. Our results inform policy development by highlighting successful elements of Brazil's ZH program, variable outcomes across divergent food security dimensions, and synergies and trade-offs between sustainable development goals, including environmental protection.


Assuntos
Abastecimento de Alimentos , Política Pública , Desenvolvimento Sustentável , Brasil , Transtornos da Nutrição Infantil/prevenção & controle , Pré-Escolar , Humanos , Lactente , Mortalidade Infantil , Pobreza , Floresta Úmida
3.
J Anim Ecol ; 89(7): 1570-1580, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32419138

RESUMO

The altered ecological and environmental conditions in towns and cities strongly affect demographic traits of urban animal populations, for example avian reproductive success is often reduced. Previous work suggests that this is partly driven by low insect availability during the breeding season, but robust experimental evidence that supports this food limitation hypothesis is not yet available. We tested core predictions of the food limitation hypothesis using a controlled experiment that provided supplementary insect food (nutritionally enhanced mealworms supplied daily to meet 40%-50% of each supplemented brood's food requirements) to great tit nestlings in urban and forest habitats. We measured parental provisioning rates and estimated the amount of supplementary food consumed by control and experimental nestlings, and assessed their body size and survival rates. Provisioning rates were similar across habitats and control and supplemented broods, but supplemented (and not control) broods consumed large quantities of supplementary food. As predicted by the food limitation hypothesis we found that nestlings in (a) urban control broods had smaller body size and nestling survival rates than those in forest control broods; (b) forest supplemented and control broods had similar body size and survival rates; (c) urban supplemented nestlings had larger body size and survival rates than those in urban control broods; and crucially (d) urban supplemented broods had similar body size and survival rates to nestlings in forest control broods. Our results provide rare experimental support for the strong negative effects of food limitation during the nestling rearing period on urban birds' breeding success. Furthermore, the fact that supplementary food almost completely eliminated habitat differences in survival rate and nestling body size suggest that urban stressors other than food shortage contributed relatively little to the reduced avian breeding success. Finally, given the impacts of the amount of supplementary food that we provided and taking clutch size differences into account, our results suggest that urban insect populations in our study system would need to be increased by a factor of at least 2.5 for urban and forest great tits to have similar reproductive success.


Assuntos
Passeriformes , Animais , Cidades , Tamanho da Ninhada , Ecossistema , Reprodução
4.
Glob Chang Biol ; 26(5): 2814-2828, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31985111

RESUMO

Species interactions have a spatiotemporal component driven by environmental cues, which if altered by climate change can drive shifts in community dynamics. There is insufficient understanding of the precise time windows during which inter-annual variation in weather drives phenological shifts and the consequences for mismatches between interacting species and resultant population dynamics-particularly for insects. We use a 20 year study on a tri-trophic system: sycamore Acer pseudoplatanus, two associated aphid species Drepanosiphum platanoidis and Periphyllus testudinaceus and their hymenopteran parasitoids. Using a sliding window approach, we assess climatic drivers of phenology in all three trophic levels. We quantify the magnitude of resultant trophic mismatches between aphids and their plant hosts and parasitoids, and then model the impacts of these mismatches, direct weather effects and density dependence on local-scale aphid population dynamics. Warmer temperatures in mid-March to late-April were associated with advanced sycamore budburst, parasitoid attack and (marginally) D. platanoidis emergence. The precise time window during which spring weather advances phenology varies considerably across each species. Crucially, warmer temperatures in late winter delayed the emergence of both aphid species. Seasonal variation in warming rates thus generates marked shifts in the relative timing of spring events across trophic levels and mismatches in the phenology of interacting species. Despite this, we found no evidence that aphid population growth rates were adversely impacted by the magnitude of mismatch with their host plants or parasitoids, or direct impacts of temperature and precipitation. Strong density dependence effects occurred in both aphid species and probably buffered populations, through density-dependent compensation, from adverse impacts of the marked inter-annual climatic variation that occurred during the study period. These findings explain the resilience of aphid populations to climate change and uncover a key mechanism, warmer winter temperatures delaying insect phenology, by which climate change drives asynchronous shifts between interacting species.


Assuntos
Afídeos , Animais , Mudança Climática , Dinâmica Populacional , Estações do Ano , Temperatura
5.
Ecol Appl ; 29(6): e01946, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31173423

RESUMO

There are increasing calls to provide greenspace in urban areas, yet the ecological quality, as well as quantity, of greenspace is important. Short mown grassland designed for recreational use is the dominant form of urban greenspace in temperate regions but requires considerable maintenance and typically provides limited habitat value for most taxa. Alternatives are increasingly proposed, but the biodiversity potential of these is not well understood. In a replicated experiment across six public urban greenspaces, we used nine different perennial meadow plantings to quantify the relative roles of floristic diversity and height of sown meadows on the richness and composition of three taxonomic groups: plants, invertebrates, and soil microbes. We found that all meadow treatments were colonized by plant species not sown in the plots, suggesting that establishing sown meadows does not preclude further locally determined grassland development if management is appropriate. Colonizing species were rarer in taller and more diverse plots, indicating competition may limit invasion rates. Urban meadow treatments contained invertebrate and microbial communities that differed from mown grassland. Invertebrate taxa responded to changes in both height and richness of meadow vegetation, but most orders were more abundant where vegetation height was longer than mown grassland. Order richness also increased in longer vegetation and Coleoptera family richness increased with plant diversity in summer. Microbial community composition seems sensitive to plant species composition at the soil surface (0-10 cm), but in deeper soils (11-20 cm) community variation was most responsive to plant height, with bacteria and fungi responding differently. In addition to improving local residents' site satisfaction, native perennial meadow plantings can produce biologically diverse grasslands that support richer and more abundant invertebrate communities, and restructured plant, invertebrate, and soil microbial communities compared with short mown grassland. Our results suggest that diversification of urban greenspace by planting urban meadows in place of some mown amenity grassland is likely to generate substantial biodiversity benefits, with a mosaic of meadow types likely to maximize such benefits.


Assuntos
Biodiversidade , Pradaria , Ecossistema , Plantas , Solo
6.
Front Microbiol ; 9: 1461, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30018611

RESUMO

We assess whether arbuscular mycorrhizal fungi (AMF) improve growth, nutritional status, phenology, flower and fruit production, and disease resistance in woody perennial crops using apple (Malus pumila) as a study system. In a fully factorial experiment, young trees were grown for 3 years with or without AMF (Funneliformis mosseae and Rhizophagus irregularis), and with industrial standard fertiliser applications or restricted fertiliser (10% of standard). We use two commercial scions (Dabinett and Michelin) and rootstocks (MM111 and MM106). Industrial standard fertiliser applications reduced AMF colonisation and root biomass, potentially increasing drought sensitivity. Mycorrhizal status was influenced by above ground genotypes (scion type) but not rootstocks, indicating strong interactions between above and below ground plant tissue. The AMF inoculation significantly increased resistance to Neonectria ditissima, a globally economically significant fungal pathogen of apple orchards, but did not consistently alter leaf nutrients, growth, phenology or fruit and flower production. This study significantly advances understanding of AMF benefits to woody perennial crops, especially increased disease resistance which we show is not due to improved tree nutrition or drought alleviation. Breeding programmes and standard management practises can limit the potential for these benefits.

7.
Ecol Appl ; 28(6): 1581-1593, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30044898

RESUMO

Shifting cultivation dominates many tropical forest regions. It is expanding into old-growth forests, and fallow period duration is rapidly decreasing, limiting secondary forest recovery. Shifting cultivation is thus a major driver of carbon emissions through deforestation and forest degradation, and of biodiversity loss. The impacts of shifting cultivation on carbon stocks have rarely been quantified, and the potential for carbon-based payments for ecosystem services (PES), such as REDD+, to protect carbon in shifting cultivation landscapes is unknown. We present empirical data on aboveground carbon stocks in old-growth forest and shifting cultivation landscapes in northeast India, a hotspot of threatened biodiversity. We then model landscape-level carbon stocks under business-as-usual scenarios, via expansion into the old-growth forest or decreasing fallow periods, and intervention scenarios in which REDD+ is used to either reduce deforestation of primary or secondary forest or increase fallow period duration. We found substantial recovery of carbon stocks as secondary forest regenerates, with a 30-yr fallow storing about one-half the carbon of an old-growth forest. Business-as-usual scenarios led to substantial carbon loss, with an 80% reduction following conversion of old-growth forest to a 30-yr shifting cultivation cycle and, relative to a 30-yr cultivation landscape, a 70% reduction when switching to a 5-yr cultivation cycle. Sparing old-growth forests from deforestation using protected areas and intensifying cropping in the remaining area of shifting cultivation is the most optimal strategy for carbon storage. In areas lacking old-growth forest, substantial carbon stocks accumulate over time by sparing fallows for permanent forest regeneration. Successful implementation of REDD+ in shifting cultivation landscapes can help avert global climate change by protecting forest carbon, with likely co-benefits for biodiversity.


Assuntos
Ciclo do Carbono , Agricultura Florestal/métodos , Florestas , Mudança Climática , Índia , Modelos Teóricos
8.
Ecol Appl ; 28(5): 1143-1156, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29679462

RESUMO

Urbanization can have marked effects on plant and animal populations' phenology, population size, predator-prey, interactions and reproductive success. These aspects are rarely studied simultaneously in a single system, and some are rarely investigated, e.g., how insect phenology responds to urban development. Here, we study a tri-trophic system of trees, phytophagous insects (caterpillars), and insectivorous birds (Great Tits) to assess how urbanization influences (1) the phenology of each component of this system, (2) insect abundance, and (3) avian reproductive success. We use data from two urban and two forest sites in Hungary, central Europe, collected over four consecutive years. Despite a trend of earlier leaf emergence in urban sites, there is no evidence for an earlier peak in caterpillar abundance. Thus, contrary to the frequently stated prediction in the literature, the earlier breeding of urban bird populations is not associated with an earlier peak in caterpillar availability. Despite this the seasonal dynamics of caterpillar biomass exhibited striking differences between habitat types with a single clear peak in forests, and several much smaller peaks in urban sites. Caterpillar biomass was higher in forests than urban areas across the entire sampling period, and between 8.5 and 24 times higher during the first brood's chick-rearing period. This higher biomass was not associated with taller trees in forest sites, or with tree species identity, and occurred despite most of our focal trees being native to the study area. Urban Great Tits laid smaller clutches, experienced more frequent nestling mortality from starvation, reared fewer offspring to fledging age, and their fledglings had lower body mass. Our study strongly indicates that food limitation is responsible for lower avian reproductive success in cities, which is driven by reduced availability of the preferred nestling diet, i.e., caterpillars, rather than phenological shifts in the timing of peak food availability.


Assuntos
Cadeia Alimentar , Mariposas/fisiologia , Reprodução , Aves Canoras/fisiologia , Urbanização , Animais , Hungria , Larva/crescimento & desenvolvimento , Larva/fisiologia , Mariposas/crescimento & desenvolvimento , Densidade Demográfica , Dinâmica Populacional , Estações do Ano
9.
Nat Ecol Evol ; 2(6): 970-975, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29686235

RESUMO

Increasing temperatures associated with climate change may generate phenological mismatches that disrupt previously synchronous trophic interactions. Most work on mismatch has focused on temporal trends, whereas spatial variation in the degree of trophic synchrony has largely been neglected, even though the degree to which mismatch varies in space has implications for meso-scale population dynamics and evolution. Here we quantify latitudinal trends in phenological mismatch, using phenological data on an oak-caterpillar-bird system from across the UK. Increasing latitude delays phenology of all species, but more so for oak, resulting in a shorter interval between leaf emergence and peak caterpillar biomass at northern locations. Asynchrony found between peak caterpillar biomass and peak nestling demand of blue tits, great tits and pied flycatchers increases in earlier (warm) springs. There is no evidence of spatial variation in the timing of peak nestling demand relative to peak caterpillar biomass for any species. Phenological mismatch alone is thus unlikely to explain spatial variation in population trends. Given projections of continued spring warming, we predict that temperate forest birds will become increasingly mismatched with peak caterpillar timing. Latitudinal invariance in the direction of mismatch may act as a double-edged sword that presents no opportunities for spatial buffering from the effects of mismatch on population size, but generates spatially consistent directional selection on timing, which could facilitate rapid evolutionary change.


Assuntos
Mudança Climática , Cadeia Alimentar , Mariposas/crescimento & desenvolvimento , Comportamento de Nidação , Quercus/crescimento & desenvolvimento , Aves Canoras/fisiologia , Animais , Larva/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Dinâmica Populacional , Estações do Ano , Temperatura , Reino Unido
10.
Glob Environ Change ; 42: 136-147, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28367001

RESUMO

The rise in greenhouse gas emissions from air travel could be reduced by individuals voluntarily abstaining from, or reducing, flights for leisure and recreational purposes. In theory, we might expect that people with pro-environmental value orientations and concerns about the risks of climate change, and those who engage in more pro-environmental household behaviours, would also be more likely to abstain from such voluntary air travel, or at least to fly less far. Analysis of two large datasets from the United Kingdom, weighted to be representative of the whole population, tested these associations. Using zero-inflated Poisson regression models, we found that, after accounting for potential confounders, there was no association between individuals' environmental attitudes, concern over climate change, or their routine pro-environmental household behaviours, and either their propensity to take non-work related flights, or the distances flown by those who do so. These findings contrasted with those for pro-environmental household behaviours, where associations with environmental attitudes and concern were observed. Our results offer little encouragement for policies aiming to reduce discretionary air travel through pro-environmental advocacy, or through 'spill-over' from interventions to improve environmental impacts of household routines.

11.
PLoS One ; 12(3): e0174376, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28334034

RESUMO

Conservation policy frequently assumes that increasing people's exposure to green-space enhances their knowledge of the natural world and desire to protect it. Urban development is, however, considered to be driving declining connectedness to nature. Despite this the evidence base supporting the assumption that visiting green-spaces promotes biodiversity knowledge and conservation support, and the impacts of urbanization on these relationships, is surprisingly limited. Using data from door-to-door surveys of nearly 300 residents in three pairs of small and large urban areas in England we demonstrate that people who visit green-space more regularly have higher biodiversity knowledge and support for conservation (measured using scales of pro-environmental behavior). Crucially these relationships only arise when considering visits to the countryside and not the frequency of visits to urban green-space. These patterns are robust to a suite of confounding variables including nature orientated motivations for visiting green-space, socio-economic and demographic factors, garden-use and engagement with natural history programs. Despite this the correlations that we uncover cannot unambiguously demonstrate that visiting the countryside improves biodiversity knowledge and conservation support. We consider it likely, however, that two mechanisms operate through a positive feedback loop i.e. increased visits to green-space promote an interest in and knowledge of biodiversity and support for conservation, which in turn further increase the desire to visit green-space and experience nature. The intensity of urbanization around peoples' homes, but not city size, is negatively associated with their frequency of countryside visits and biodiversity knowledge. Designing less intensely urbanized cities with good access to the countryside, combined with conservation policies that promote access to the countryside thus seems likely to maximize urban residents' biodiversity knowledge and support for conservation.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Conhecimento , Reforma Urbana , Inglaterra , Jardinagem , Humanos , Motivação , Urbanização
12.
J Environ Manage ; 191: 162-171, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28092752

RESUMO

Urban road verges can contain significant biodiversity, contribute to structural connectivity between other urban greenspaces, and due to their proximity to road traffic are well placed to provide ecosystem services. Using the UK as a case study we review and critically evaluate a broad range of evidence to assess how this considerable potential can be enhanced despite financial, contractual and public opinion constraints. Reduced mowing frequency and other alterations would enhance biodiversity, aesthetics and pollination services, whilst delivering costs savings and potentially being publically acceptable. Retaining mature trees and planting additional ones is favourable to residents and would enhance biodiversity, pollution and climate regulation, carbon storage, and stormwater management. Optimising these services requires improved selection of tree species, and creating a more diverse tree stock. Due to establishment costs additional tree planting and maintenance could benefit from payment for ecosystem service schemes. Verges could also provide areas for cultivation of biofuels and possibly food production. Maximising the contribution of verges to urban biodiversity and ecosystem services is economical and becoming an increasingly urgent priority as the road network expands and other urban greenspace is lost, requiring enhancement of existing greenspace to facilitate sustainable urban development.


Assuntos
Biodiversidade , Ecossistema , Carbono , Conservação dos Recursos Naturais/economia , Árvores
13.
PLoS One ; 9(10): e109397, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25338062

RESUMO

Non-native species are frequently considered to influence urban assemblages. The grey squirrel Sciurus carolinensis is one such species that is widespread in the UK and is starting to spread across Europe; it predates birds' nests and can compete with birds for supplementary food. Using distance sampling across the urbanisation intensity gradient in Sheffield (UK) we test whether urban grey squirrels influence avian species richness and density through nest predation and competition for supplementary food sources. We also assess how urban bird assemblages respond to supplementary feeding. We find that grey squirrels slightly reduced the abundance of breeding bird species most sensitive to squirrel nest predation by reducing the beneficial impact of woodland cover. There was no evidence that grey squirrel presence altered relationships between supplementary feeding and avian assemblage structure. This may be because, somewhat surprisingly, supplementary feeding was not associated with the richness or density of wintering bird assemblages. These associations were positive during the summer, supporting advocacy to feed birds during the breeding season and not just winter, but explanatory capacity was limited. The amount of green space and its quality, assessed as canopy cover, had a stronger influence on avian species richness and population size than the presence of grey squirrels and supplementary feeding stations. Urban bird populations are thus more likely to benefit from investment in improving the availability of high quality habitats than controlling squirrel populations or increased investment in supplementary feeding.


Assuntos
Biodiversidade , Aves/fisiologia , Sciuridae/fisiologia , Animais , Ecossistema , Europa (Continente) , Humanos , Comportamento Predatório , Estações do Ano , Urbanização
14.
Ecol Evol ; 4(8): 1413-22, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24834337

RESUMO

Understanding the long-term dynamics of urban vegetation is essential in determining trends in the provision of key resources for biodiversity and ecosystem services and improving their management. Such studies are, however, extremely scarce due to the lack of suitable historical data. We use repeat historical photographs from the 1900s, 1950s, and 2010 to assess general trends in the quantity and size distributions of the tree stock in urban Sheffield and resultant aboveground carbon storage. Total tree numbers declined by a third from the 1900s to the 1950s, but increased by approximately 50% from the 1900s-2010, and by 100% from the 1950s-2010. Aboveground carbon storage in urban tree stocks had doubled by 2010 from the levels present in the 1900s and 1950s. The initial decrease occurred at a time when national and regional tree stocks were static and are likely to be driven by rebuilding following bombing of the urban area during the Second World War and by urban expansion. In 2010, trees greater than 10 m in height comprised just 8% of those present. The increases in total tree numbers are thus largely driven by smaller trees and are likely to be associated with urban tree planting programmes. Changes in tree stocks were not constant across the urban area but varied with the current intensity of urbanization. Increases from 1900 to 2010 in total tree stocks, and smaller sized trees, tended to be greatest in the most intensely urbanized areas. In contrast, the increases in the largest trees were more marked in areas with the most green space. These findings emphasize the importance of preserving larger fragments of urban green space to protect the oldest and largest trees that contribute disproportionately to carbon storage and other ecosystem services. Maintaining positive trends in urban tree stocks and associated ecosystem service provision will require continued investment in urban tree planting programmes in combination with additional measures, such as revisions to tree preservation orders, to increase the retention of such trees as they mature.

15.
Ecol Evol ; 3(7): 1864-77, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23919135

RESUMO

Climate change-induced shifts in phenology have important demographic consequences, and are frequently used to assess species' sensitivity to climate change. Therefore, developing accurate phenological predictions is an important step in modeling species' responses to climate change. The ability of such phenological models to predict effects at larger spatial and temporal scales has rarely been assessed. It is also not clear whether the most frequently used phenological index, namely the average date of a phenological event across a population, adequately captures phenological shifts in the distribution of events across the season. We use the long-tailed tit Aegithalos caudatus (Fig. 1) as a case study to explore these issues. We use an intensive 17-year local study to model mean breeding date and test the capacity of this local model to predict phenology at larger spatial and temporal scales. We assess whether local models of breeding initiation, termination, and renesting reveal phenological shifts and responses to climate not detected by a standard phenological index, that is, population average lay date. These models take predation timing/intensity into account. The locally-derived model performs well at predicting phenology at the national scale over several decades, at both high and low temperatures. In the local model, a trend toward warmer Aprils is associated with a significant advance in termination dates, probably in response to phenological shifts in food supply. This results in a 33% reduction in breeding season length over 17 years - a substantial loss of reproductive opportunity that is not detected by the index of population average lay date. We show that standard phenological indices can fail to detect patterns indicative of negative climatic effects, potentially biasing assessments of species' vulnerability to climate change. More positively, we demonstrate the potential of detailed local studies for developing broader-scale predictive models of future phenological shifts.

16.
PLoS One ; 7(4): e34542, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22496827

RESUMO

Winter habitat use and the magnitude of migratory connectivity are important parameters when assessing drivers of the marked declines in avian migrants. Such information is unavailable for most species. We use a stable isotope approach to assess these factors for three declining African-Eurasian migrants whose winter ecology is poorly known: wood warbler Phylloscopus sibilatrix, house martin Delichon urbicum and common swift Apus apus. Spatially segregated breeding wood warbler populations (sampled across a 800 km transect), house martins and common swifts (sampled across a 3,500 km transect) exhibited statistically identical intra-specific carbon and nitrogen isotope ratios in winter grown feathers. Such patterns are compatible with a high degree of migratory connectivity, but could arise if species use isotopically similar resources at different locations. Wood warbler carbon isotope ratios are more depleted than typical for African-Eurasian migrants and are compatible with use of moist lowland forest. The very limited variance in these ratios indicates specialisation on isotopically restricted resources, which may drive the similarity in wood warbler populations' stable isotope ratios and increase susceptibility to environmental change within its wintering grounds. House martins were previously considered to primarily use moist montane forest during the winter, but this seems unlikely given the enriched nature of their carbon isotope ratios. House martins use a narrower isotopic range of resources than the common swift, indicative of increased specialisation or a relatively limited wintering range; both factors could increase house martins' vulnerability to environmental change. The marked variance in isotope ratios within each common swift population contributes to the lack of population specific signatures and indicates that the species is less vulnerable to environmental change in sub-Saharan Africa than our other focal species. Our findings demonstrate how stable isotope research can contribute to understanding avian migrants' winter ecology and conservation status.


Assuntos
Migração Animal , Ecossistema , Espécies em Perigo de Extinção , Aves Canoras/fisiologia , Animais , Isótopos de Carbono/análise , Plumas/química , Feminino , Masculino , Isótopos de Nitrogênio/análise , Estações do Ano
17.
Biol Rev Camb Philos Soc ; 85(3): 643-67, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20128785

RESUMO

Despite increasing interest in urban ecology the factors limiting the colonisation of towns and cities by species from rural areas are poorly understood. This is largely due to the lack of a detailed conceptual framework for this urbanisation process, and of sufficient case studies. Here, we develop such a framework. This draws upon a wide range of ecological and evolutionary theory and the increasing number of studies of how the markedly divergent conditions in urban and rural areas influence the traits of urban populations and the structure of urban assemblages. We illustrate the importance of this framework by compiling a detailed case study of spatial and temporal variation in the urbanisation of the blackbird Turdus merula. Our framework identifies three separate stages in the urbanisation process: (i) arrival, (ii) adjustment, and (iii) spread. The rate of progress through each stage is influenced by environmental factors, especially human attitudes and socio-economic factors that determine the history of urban development and the quality of urban habitats, and by species' ecological and life-history traits. Some traits can positively influence progression through one stage, but delay progression through another. Rigorous assessment of the factors influencing urbanisation should thus ideally pay attention to the different stages. Urbanisation has some similarities to invasion of exotic species, but the two clearly differ. Invasion concerns geographic range expansion that is external to the species' original geographic range, whilst urbanisation typically relates to filling gaps within a species' original range. This process is exemplified by the blackbird which is now one of the commonest urban bird species throughout its Western Palearctic range. This is in stark contrast to the situation 150 years ago when the species was principally confined to forest. Blackbird urbanisation was first recorded in Germany in 1820, yet some European cities still lack urban blackbirds. This is especially so in the east, where urbanisation has spread more slowly than in the west. The timing of blackbird urbanisation exhibits a marked spatial pattern, with latitude and longitude explaining 76% of the variation. This strong spatial pattern contrasts with the weaker spatial pattern in timing of urbanisation exhibited by the woodpigeon Columba palumbus (with location explaining 39% of the variation), and with the very weak spatial pattern in timing of black-billed magpie Pica pica urbanisation (in which location explains 12% of the variation). Strong spatial patterns in timing of urbanisation are more compatible with the leap-frog urbanisation model, in which urban adapted or imprinted birds colonise other towns and cities, than with the independent urbanisation model, in which urban colonisation events occur independently of each other. Spatial patterns in isolation do not, however, confirm one particular model. Factors relating to the arrival and adjustment stages appear particularly likely to have influenced the timing of blackbird urbanisation. Spatial variation in the occurrence of urban populations and the timing of their establishment creates opportunities to assess the factors regulating urbanisation rates, and how the composition of urban assemblages develops as a result. These are major issues for urban ecology.


Assuntos
Cidades , Ecossistema , Modelos Biológicos , Passeriformes/fisiologia , Animais , Demografia
18.
Proc Biol Sci ; 276(1666): 2403-10, 2009 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-19364751

RESUMO

Urban areas are expanding rapidly, but a few native species have successfully colonized them. The processes underlying such colonization events are poorly understood. Using the blackbird Turdus merula, a former forest specialist that is now one of the most common urban birds in its range, we provide the first assessment of two contrasting urban colonization models. First, that urbanization occurred independently. Second, that following initial urbanization, urban-adapted individuals colonized other urban areas in a leapfrog manner. Previous analyses of spatial patterns in the timing of blackbird urbanization, and experimental introductions of urban and rural blackbirds to uncolonized cities, suggest that the leapfrog model is likely to apply. We found that, across the western Palaearctic, urban blackbird populations contain less genetic diversity than rural ones, urban populations are more strongly differentiated from each other than from rural populations and assignment tests support a rural source population for most urban individuals. In combination, these results provide much stronger support for the independent urbanization model than the leapfrog one. If the former model predominates, colonization of multiple urban centres will be particularly difficult when urbanization requires genetic adaptations, having implications for urban species diversity.


Assuntos
Comportamento de Retorno ao Território Vital , Passeriformes/fisiologia , Animais , Fluxo Gênico , Variação Genética , Genótipo , Comportamento de Nidação , Passeriformes/genética , Filogenia , Densidade Demográfica , Dinâmica Populacional , Especificidade da Espécie
19.
Mol Ecol Resour ; 9(6): 1520-6, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21564948

RESUMO

We characterized 38 microsatellite loci in the European blackbird, Turdus merula. Thirty-seven loci were identified by testing 242 loci that had been originally isolated in other avian species. One additional locus was isolated from a European blackbird genomic library. All loci were characterized in 20-29 blackbirds from a population in the Czech Republic and displayed between two and 16 alleles, with observed heterozygosity ranging from 0.04 to 1.00. Thirty-seven loci could be assigned a chromosome location in the zebra finch (Taeniopygia guttata) genome based on sequence homology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...