Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 20(4): 2615-2619, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32125870

RESUMO

Polyacetylene molecular wires have attracted a long-standing interest for the past 40 years. From a fundamental perspective, there are two main reasons for the interest. First, polyacetylenes are a prime realization of a one-dimensional topological insulator. Second, long molecules support freely propagating topological domain-wall states, so-called "solitons," which provide an early paradigm for spin-charge separation. Because of recent experimental developments, individual polyacetylene chains can now be synthesized on substrates. Motivated by this breakthrough, we here propose a novel way for chemically supported soliton design in these systems. We demonstrate how to control the soliton position and how to read it out via external means. Also, we show how extra soliton-antisoliton pairs arise when applying a moderate static electric field. We thus make a step toward functionality of electronic devices based on soliton manipulation, that is, "solitonics".

2.
Nano Lett ; 18(10): 6387-6391, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30187756

RESUMO

Polymethine dyes are linear π-conjugated compounds with an odd number of carbons that display a much greater delocalization in comparison to polyenes that have an even number of carbon atoms in their main chain. Herein, we perform scanning tunneling microscope based break-junction measurements on a series of three cyanine dyes of increasing length. We demonstrate, at the single molecule level, that these short chain polymethine systems exhibit a substantially smaller decay in conductance with length (attenuation factor ß = 0.04 Å-1) compared to traditional polyenes (ß ≈ 0.2 Å-1). Furthermore, we show that by changing solvent we are able to shift the ß value, demonstrating a remarkable negative ß value, with conductance increasing with molecular length. First principle calculations provide support for the experimentally observed near-uniform length dependent conductance and further suggest that the variations in ß with solvent are due to solvent-induced changes in the alignment of the frontier molecular orbitals relative to the Fermi energy of the leads. A simplified Hückel model suggests that the smaller decay in conductance correlates with the smaller degree of bond order alternation present in polymethine compounds compared to polyenes. These findings may enable the design of molecular wires without a length-dependent decay for efficient electron transport at the nanoscale.

3.
J Chem Phys ; 148(3): 030901, 2018 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-29352777

RESUMO

Molecular junctions, where single molecules are bound to metal or semiconductor electrodes, represent a unique architecture to investigate molecules in a distinct nonequilibrium situation and, in a broader context, to study basic mechanisms of charge and energy transport in a many-body quantum system at the nanoscale. Experimental studies of molecular junctions have revealed a wealth of interesting transport phenomena, the understanding of which necessitates theoretical modeling. The accurate theoretical description of quantum transport in molecular junctions is challenging because it requires methods that are capable to describe the electronic structure and dynamics of molecules in a condensed phase environment out of equilibrium, in some cases with strong electron-electron and/or electronic-vibrational interaction. This perspective discusses recent progress in the theory and simulation of quantum transport in molecular junctions. Furthermore, challenges are identified, which appear crucial to achieve a comprehensive and quantitative understanding of transport in these systems.

4.
Angew Chem Int Ed Engl ; 56(45): 14145-14148, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-28940975

RESUMO

We report that the single-molecule junction conductance of thiol-terminated silanes with Ag electrodes are higher than the conductance of those formed with Au electrodes. These results are in contrast to the trends in the metal work function Φ(Ag)<Φ(Au). As such, a better alignment of the Au Fermi level to the molecular orbital of silane that mediates charge transport would be expected. This conductance trend is reversed when we replace the thiols with amines, highlighting the impact of metal-S covalent and metal-NH2 dative bonds in controlling the molecular conductance. Density functional theory calculations elucidate the crucial role of the chemical linkers in determining the level alignment when molecules are attached to different metal contacts. We also demonstrate that conductance of thiol-terminated silanes with Pt electrodes is lower than the ones formed with Au and Ag electrodes, again in contrast to the trends in the metal work-functions.

5.
Phys Rev Lett ; 118(19): 196801, 2017 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-28548510

RESUMO

We investigate charge relaxation in quantum wires of spinless disordered fermions (t-V model). Our observable is the time-dependent density propagator Π_{ϵ}(x,t), calculated in windows of different energy density ϵ of the many-body Hamiltonian and at different disorder strengths W, not exceeding the critical value W_{c}. The width Δx_{ϵ}(t) of Π_{ϵ}(x,t) exhibits a behavior dlnΔx_{ϵ}(t)/dlnt=ß_{ϵ}(t), where the exponent function ß_{ϵ}(t)≲1/2 is seen to depend strongly on L at all investigated parameter combinations. (i) We confirm the existence of a region in phase space that exhibits subdiffusive dynamics in the sense that ß_{ϵ}(t)<1/2 in a large window of times. However, subdiffusion might possibly be transient, only, finally giving way to a conventional diffusive behavior with ß_{ϵ}=1/2. (ii) We cannot confirm the existence of many-body mobility edges even in regions of the phase diagram that have been reported to be deep in the delocalized phase. (iii) (Transient) subdiffusion 0<ß_{ϵ}(t)≲1/2 coexists with an enhanced probability for returning to the origin Π_{ϵ}(0,t), decaying much slower than 1/Δx_{ϵ}(t). Correspondingly, the spatial decay of Π_{ϵ}(x,t) is far from Gaussian, being exponential or even slower. On a phenomenological level, our findings are broadly consistent with the effects of strong disorder and (fractal) Griffiths regions.

6.
Beilstein J Nanotechnol ; 7: 533-43, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27335744

RESUMO

On the basis of perodic density functional theory (DFT) calculations, we have addressed the geometric structures and electronic properties of water layers on flat and stepped Pb surfaces. In contrast to late d-band metals, on Pb(111) the energy minimum structure does not correspond to an ice-like hexagonal arrangement at a coverage of 2/3, but rather to a distorted structure at a coverage of 1 due to the larger lattice constant of Pb. At stepped Pb surfaces, the water layers are pinned at the step edge and form a complex network consisting of rectangles, pentagons and hexagons. The thermal stability of the water layers has been studied by using ab initio molecular dynamics simulations (AIMD) at a temperature of 140 K. Whereas the water layer on Pb(111) is already unstable at this temperature, the water layers on Pb(100), Pb(311), Pb(511) and Pb(711) exhibit a higher stability because of stronger water-water interactions. The vibrational spectra of the water layers at the stepped surfaces show a characteristic splitting into three modes in the O-H stretch region.

7.
J Chem Theory Comput ; 11(12): 5665-87, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-26642984

RESUMO

We present the GW100 set. GW100 is a benchmark set of the ionization potentials and electron affinities of 100 molecules computed with the GW method using three independent GW codes and different GW methodologies. The quasi-particle energies of the highest-occupied molecular orbitals (HOMO) and lowest-unoccupied molecular orbitals (LUMO) are calculated for the GW100 set at the G0W0@PBE level using the software packages TURBOMOLE, FHI-aims, and BerkeleyGW. The use of these three codes allows for a quantitative comparison of the type of basis set (plane wave or local orbital) and handling of unoccupied states, the treatment of core and valence electrons (all electron or pseudopotentials), the treatment of the frequency dependence of the self-energy (full frequency or more approximate plasmon-pole models), and the algorithm for solving the quasi-particle equation. Primary results include reference values for future benchmarks, best practices for convergence within a particular approach, and average error bars for the most common approximations.

8.
J Chem Theory Comput ; 11(11): 5161-76, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26574313

RESUMO

We present a formalism relying on density functional theory for the calculation of the spatially continuous electron current density j(r) and induced magnetic fields B(r) in molecular films in dc transport. The proposed method treats electron transport in graphene ribbons containing on the of order 10(3) atoms. The employed computational techniques scale efficiently when using several thousand CPUs. An application to transport through hydrogenated graphene will be presented. As we will show, the adatoms have an impact on the transmission function not only because they introduce additional states but also because their presence modifies the geometry of the carbon host lattice (lattice relaxation).

9.
Nat Commun ; 6: 7132, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-26013263

RESUMO

The standard hydrodynamic Drude model with hard-wall boundary conditions can give accurate quantitative predictions for the optical response of noble-metal nanoparticles. However, it is less accurate for other metallic nanosystems, where surface effects due to electron density spill-out in free space cannot be neglected. Here we address the fundamental question whether the description of surface effects in plasmonics necessarily requires a fully quantum-mechanical ab initio approach. We present a self-consistent hydrodynamic model (SC-HDM), where both the ground state and the excited state properties of an inhomogeneous electron gas can be determined. With this method we are able to explain the size-dependent surface resonance shifts of Na and Ag nanowires and nanospheres. The results we obtain are in good agreement with experiments and more advanced quantum methods. The SC-HDM gives accurate results with modest computational effort, and can be applied to arbitrary nanoplasmonic systems of much larger sizes than accessible with ab initio methods.

10.
Nano Lett ; 15(6): 3716-22, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-26020454

RESUMO

We study the impact of electrode band structure on transport through single-molecule junctions by measuring the conductance of pyridine-based molecules using Ag and Au electrodes. Our experiments are carried out using the scanning tunneling microscope based break-junction technique and are supported by density functional theory based calculations. We find from both experiments and calculations that the coupling of the dominant transport orbital to the metal is stronger for Au-based junctions when compared with Ag-based junctions. We attribute this difference to relativistic effects, which result in an enhanced density of d-states at the Fermi energy for Au compared with Ag. We further show that the alignment of the conducting orbital relative to the Fermi level does not follow the work function difference between two metals and is different for conjugated and saturated systems. We thus demonstrate that the details of the molecular level alignment and electronic coupling in metal-organic interfaces do not follow simple rules but are rather the consequence of subtle local interactions.

11.
ACS Nano ; 9(4): 4496-507, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25835284

RESUMO

We investigate if the functionality of spin crossover molecules is preserved when they are assembled into an interfacial device structure. Specifically, we prepare and investigate gold nanoparticle arrays, into which room-temperature spin crossover molecules are introduced, more precisely, [Fe(AcS-BPP)2](ClO4)2, where AcS-BPP = (S)-(4-{[2,6-(dipyrazol-1-yl)pyrid-4-yl]ethynyl}phenyl)ethanethioate (in short, Fe(S-BPP)2). We combine three complementary experiments to characterize the molecule-nanoparticle structure in detail. Temperature-dependent Raman measurements provide direct evidence for a (partial) spin transition in the Fe(S-BPP)2-based arrays. This transition is qualitatively confirmed by magnetization measurements. Finally, charge transport measurements on the Fe(S-BPP)2-gold nanoparticle devices reveal a minimum in device resistance versus temperature, R(T), curves around 260-290 K. This is in contrast to similar networks containing passive molecules only that show monotonically decreasing R(T) characteristics. Backed by density functional theory calculations on single molecular conductance values for both spin states, we propose to relate the resistance minimum in R(T) to a spin transition under the hypothesis that (1) the molecular resistance of the high spin state is larger than that of the low spin state and (2) transport in the array is governed by a percolation model.

12.
Phys Rev Lett ; 113(13): 136602, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25302913

RESUMO

We present ab initio calculations of the local current density j(r) as it arises in dc-transport measurements. We discover pronounced patterns in the local current density, ring currents ("eddies"), that go along with orbital magnetism. Importantly, the magnitude of the ring currents can exceed the (average) transport current by orders of magnitude. We find associated magnetic fields that exhibit drastic fluctuations with field gradients reaching 1 T nm⁻¹ V⁻¹. The relevance of our observations for spin relaxation in systems with very weak spin-orbit interaction, such as organic semiconductors, is discussed. In such systems, spin relaxation induced by bias driven orbital magnetism competes with relaxation induced by the hyperfine interaction and appears to be of similar strength. We propose a NMR-type experiment in the presence of dc-current flow to observe the spatial fluctuations of the induced magnetic fields.

13.
Nat Commun ; 5: 5000, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25247247

RESUMO

Organic electronics offers prospects of functionality for science, industry and medicine that are new as compared with silicon technology and available at a very low material cost. Among the plethora of organic molecules available for materials design, polymers and oligomers are very promising, for example, because of their mechanical flexibility. They consist of repeated basic units, such as benzene rings, and the number of these units N determines their excitation gap, a property that is often used in proposals of organic photovoltaics. Here, we show that contrary to a widely held belief the magnitudes of excitation gaps do not always decay monotonously with N, but can oscillate due to the presence of a 'Dirac cone' in the band structure. With an eye on the more fundamental question how a molecular wire becomes metallic with increasing length, our research suggests that the process can exhibit incommensurate oscillations.

14.
J Chem Phys ; 138(10): 104703, 2013 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-23514509

RESUMO

C58 fullerenes were adsorbed onto room temperature Au(111) surface by low-energy (~6 eV) cluster ion beam deposition under ultrahigh vacuum conditions. The topographic and electronic properties of the deposits were monitored by means of scanning tunnelling microscopy (STM at 4.2 K). Topographic images reveal that at low coverages fullerene cages are pinned by point dislocation defects on the herringbone reconstructed gold terraces (as well as by step edges). At intermediate coverages, pinned monomers act as nucleation centres for the formation of oligomeric C58 chains and 2D islands. At the largest coverages studied, the surface becomes covered by 3D interlinked C58 cages. STM topographic images of pinned single adsorbates are essentially featureless. The corresponding local densities of states are consistent with strong cage-substrate interactions. Topographic images of [C58]n oligomers show a stripe-like intensity pattern oriented perpendicular to the axis connecting the cage centers. This striped pattern becomes even more pronounced in maps of the local density of states. As supported by density functional theory, DFT calculations, and also by analogous STM images previously obtained for C60 polymers [M. Nakaya, Y. Kuwahara, M. Aono, and T. Nakayama, J. Nanosci. Nanotechnol. 11, 2829 (2011)], we conclude that these striped orbital patterns are a fingerprint of covalent intercage bonds. For thick C58 films we have derived a bandgap of 1.2 eV from scanning tunnelling spectroscopy data confirming that the outermost C58 layer behaves as a wide band semiconductor.

15.
Nano Lett ; 13(5): 1956-61, 2013 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-23517527

RESUMO

Using a break junction technique, we find a clear signature for the formation of conducting hybrid junctions composed of a single organic molecule (benzene, naphthalene, or anthracene) connected to chains of platinum atoms. The hybrid junctions exhibit metallic-like conductance (~0.1-1G0), which is rather insensitive to further elongation by additional atoms. At low bias voltage the hybrid junctions can be elongated significantly beyond the length of the bare atomic chains. Ab initio calculations reveal that benzene based hybrid junctions have a significant binding energy and high structural flexibility that may contribute to the survival of the hybrid junction during the elongation process. The fabrication of hybrid junctions opens the way for combining the different properties of atomic chains and organic molecules to realize a new class of atomic scale interfaces.


Assuntos
Antracenos/química , Benzeno/química , Naftalenos/química , Platina/química , Teoria Quântica
16.
Phys Chem Chem Phys ; 15(18): 6684-90, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23450169

RESUMO

We present a modification of the standard electron transport methodology based on the (non-equilibrium) Green's function formalism to efficiently simulate STM-images. The novel feature of this method is that it employs an effective embedding technique that allows us to extrapolate properties of metal substrates with adsorbed molecules from quantum-chemical cluster calculations. To illustrate the potential of this approach, we present an application to STM-images of C58-dimers immobilized on Au(111)-surfaces that is motivated by recent experiments.

17.
Phys Rev Lett ; 109(20): 206804, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23215518

RESUMO

We present a numerical finite-size scaling study of the localization length in long cylinders near the integer quantum Hall transition employing the Chalker-Coddington network model. Corrections to scaling that decay slowly with increasing system size make this analysis a very challenging numerical problem. In this work we develop a novel method of stability analysis that allows for a better estimate of error bars. Applying the new method we find consistent results when keeping second (or higher) order terms of the leading irrelevant scaling field. The knowledge of the associated (negative) irrelevant exponent y is crucial for a precise determination of other critical exponents, including multifractal spectra of wave functions. We estimate |y|>/~0.4, which is considerably larger than most recently reported values. Within this approach we obtain the localization length exponent 2.62±0.06 confirming recent results. Our stability analysis has broad applicability to other observables at integer quantum Hall transition, as well as other critical points where corrections to scaling are present.

18.
Nano Lett ; 12(10): 5131-6, 2012 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-22989203

RESUMO

The magnetoresistance of a hydrogen-phthalocyanine molecule placed on an antiferromagnetic Mn(001) surface and contacted by a ferromagnetic Fe electrode is investigated using density functional theory based transport calculations and low-temperature scanning tunneling microscopy. A large and negative magnetoresistance ratio of ~50% is observed in combination with a high conductance. The effect originates from a lowest unoccupied molecular orbital (LUMO) doublet placed almost in resonance with the Fermi energy. As a consequence, irrespective of the mutual alignment of magnetizations, electron transport is always dominated by resonant transmission of Mn-majority charge carries going through LUMO levels.

19.
Nat Nanotechnol ; 6(3): 185-9, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21336269

RESUMO

Magnetoresistance is a change in the resistance of a material system caused by an applied magnetic field. Giant magnetoresistance occurs in structures containing ferromagnetic contacts separated by a metallic non-magnetic spacer, and is now the basis of read heads for hard drives and for new forms of random access memory. Using an insulator (for example, a molecular thin film) rather than a metal as the spacer gives rise to tunnelling magnetoresistance, which typically produces a larger change in resistance for a given magnetic field strength, but also yields higher resistances, which are a disadvantage for real device operation. Here, we demonstrate giant magnetoresistance across a single, non-magnetic hydrogen phthalocyanine molecule contacted by the ferromagnetic tip of a scanning tunnelling microscope. We measure the magnetoresistance to be 60% and the conductance to be 0.26G(0), where G(0) is the quantum of conductance. Theoretical analysis identifies spin-dependent hybridization of molecular and electrode orbitals as the cause of the large magnetoresistance.


Assuntos
Indóis/química , Magnetismo , Nanopartículas de Magnetita/química , Nanotecnologia/métodos , Cobalto/química , Cristalização/métodos , Condutividade Elétrica , Impedância Elétrica , Eletrodos , Eletrônica/métodos , Desenho de Equipamento , Estudos de Viabilidade , Compostos Férricos/química , Magnetismo/instrumentação , Teste de Materiais/métodos , Microscopia de Tunelamento , Processamento de Sinais Assistido por Computador
20.
Nano Lett ; 10(1): 156-63, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20025266

RESUMO

The conductance of a family of biphenyl-dithiol derivatives with conformationally fixed torsion angle was measured using the scanning tunneling microscopy (STM)-break-junction method. We found that it depends on the torsion angle phi between two phenyl rings; twisting the biphenyl system from flat (phi = 0 degrees ) to perpendicular (phi = 90 degrees ) decreased the conductance by a factor of 30. Detailed calculations of transport based on density functional theory and a two level model (TLM) support the experimentally obtained cos(2) phi correlation between the junction conductance G and the torsion angle phi. The TLM describes the pair of hybridizing highest occupied molecular orbital (HOMO) states on the phenyl rings and illustrates that the pi-pi coupling dominates the transport under "off-resonance" conditions where the HOMO levels are well separated from the Femi energy.


Assuntos
Compostos de Bifenilo/química , Tolueno/análogos & derivados , Química Orgânica/métodos , Cristalização , Condutividade Elétrica , Eletroquímica/métodos , Metais/química , Microscopia de Tunelamento/métodos , Modelos Químicos , Conformação Molecular , Estrutura Molecular , Nanoestruturas , Nanotecnologia/métodos , Teoria Quântica , Tolueno/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA