Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 24(62): 16576-16581, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30095193

RESUMO

The anisotropy of the magnetic properties of molecular magnets is a key descriptor in the search for improved magnets. Herein, it is shown how an analytical approach using single-crystal polarized neutron diffraction (PND) provides direct access to atomic magnetic susceptibility tensors. The technique was applied for the first time to two Dy-based single-molecule magnets and showed clear axial atomic susceptibility for both DyIII ions. For the triclinic system, bulk magnetization methods are not symmetry-restricted, and the experimental magnetic easy axes from both PND, angular-resolved magnetometry (ARM), and theoretical approaches all match reasonably well. ARM curves simulated from the molecular susceptibility tensor determined with PND show strong resemblance with the experimental ones. For the monoclinic compound, comparison can only be made with the theoretically calculated magnetic anisotropy, and in this case PND yields an easy-axis direction that matches that predicted by electrostatic methods. Importantly, this technique allows the determination of all elements of the magnetic susceptibility tensor and not just the easy-axis direction, as is available from electrostatic predictions. Furthermore, it has the capacity to provide each of the anisotropic magnetic susceptibility tensors for all independent magnetic ions in a molecule and thus allows studies on polynuclear complexes and compounds of higher crystalline symmetry than triclinic.

2.
Sci Rep ; 6: 18797, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26728755

RESUMO

We observed the coexistence of superconductivity and antiferromagnetic order in the single-crystalline ternary pnictide HoPdBi, a plausible topological semimetal. The compound orders antiferromagnetically at TN = 1.9 K and exhibits superconductivity below Tc = 0.7 K, which was confirmed by magnetic, electrical transport and specific heat measurements. The specific heat shows anomalies corresponding to antiferromagnetic ordering transition and crystalline field effect, but not to superconducting transition. Single-crystal neutron diffraction indicates that the antiferromagnetic structure is characterized by the propagation vector. Temperature variation of the electrical resistivity reveals two parallel conducting channels of semiconducting and metallic character. In weak magnetic fields, the magnetoresistance exhibits weak antilocalization effect, while in strong fields and temperatures below 50 K it is large and negative. At temperatures below 7 K Shubnikov-de Haas oscillations with two frequencies appear in the resistivity. These oscillations have non-trivial Berry phase, which is a distinguished feature of Dirac fermions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA