Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 18(4): 2521-2529, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35324184

RESUMO

A systematic study of gold nanocrystals is carried out using molecular dynamics simulations with reactive force fields. The nanocrystal size is varied between 2 and 10 nm with methane and butane thiolate as ligands. The reactive force fields allow investigation of the formation of staples. The simulations explain several experimental observations such as the number of staples per thiolate of about 40% and the occupation of the top adsorption sites on the facets. They also show that the frequency of staples is increased on the edges, which leads to a desorption of gold atoms from the nanocrystal edges. In contrast to previous nonreactive simulations, no difference between the distances of the ligands on the nanocrystal edges and facets is observed. Except for the 2 nm particles, the nanocrystal size and the alkane chain length of the ligands have only a small influence on the nanocrystal properties. The occupation of adsorption sites and staple frequencies are very slowly converging properties, taking more than ns.


Assuntos
Ouro , Nanopartículas , Adsorção , Ouro/química , Ligantes , Simulação de Dinâmica Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...