Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Mais filtros

Base de dados
Intervalo de ano de publicação
Phys Chem Chem Phys ; 2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32426780


In this paper we report on the use of an Ullmann-like aryl halide homocoupling reaction to obtain long Graphyne Molecular Wires (GY MWs) organized in dense, ordered arrays. Instead of using highly reactive terminal alkynes, we resort to a precursor wherein the acetylenic functional group is internal, namely protected by two phenyl rings, each bearing a Br atom in the para position to allow for linear homocoupling. In addition, two further factors concur with the production of dense and highly ordered arrays of very long GY MWs, namely the geometric compatibility between the substrate and both the organometallic intermediates and the final polymeric products of the synthesis, coupled with the presence of surface-adsorbed bromine atoms separating the MWs, which minimize inter-wire cross-linking secondary reactions.

Chem Commun (Camb) ; 54(68): 9418-9421, 2018 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-30091439


Dioxygen adsorbs in the end-on configuration on-top of the Fe atoms of an iron phthalocyanine monolayer supported on Ag(100) and is partly cleaved at room temperature to produce O/FePc/Ag(100). Scanning tunnelling microscopy coupled to density functional theory calculations gives the first experimental evidence of the substrate involvement in the O2 bond dissociation.

Beilstein J Nanotechnol ; 4: 771-80, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24367746


The paper presents the effects of fluid flow on the static and dynamic properties of carbon nanotubes that convey a viscous fluid. The mathematical model is based on the modified couple stress theory. The effects of various fluid parameters and boundary conditions on the pull-in voltages are investigated in detail. The applicability of the proposed system as nanovalves or nanosensors in nanoscale fluidic systems is elaborated. The results confirm that the nanoscale system studied in this paper can be properly applied for these purposes.