Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 26(17)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34500562

RESUMO

Gluconeogenesis is a key interface between organic acid/amino acid/lipid and sugar metabolism. The aims of this article are four-fold. First, to provide a concise overview of plant gluconeogenesis. Second, to emphasise the widespread occurrence of gluconeogenesis and its utilisation in diverse processes. Third, to stress the importance of the vacuolar storage and release of Krebs cycle acids/nitrogenous compounds, and of the role of gluconeogenesis and malic enzyme in this process. Fourth, to outline the contribution of fine control of enzyme activity to the coordinate-regulation of gluconeogenesis and malate metabolism, and the importance of cytosolic pH in this.


Assuntos
Aminoácidos/metabolismo , Gluconeogênese/fisiologia , Lipídeos/fisiologia , Plantas/metabolismo , Açúcares/metabolismo , Ciclo do Ácido Cítrico/fisiologia , Malato Desidrogenase/metabolismo , Nitrogênio/metabolismo
2.
J Sci Food Agric ; 2021 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-34455586

RESUMO

BACKGROUND: Large amounts of chemical fertilizers are still currently used to compensate the soil nutrients scarcity in order to increase and sustain crop yield with consequent rising of environmental pollution and health problems. To mitigate these environmental risks, fertilizers with slow-release behaviours have been developed. The aim of this study was to assess the agronomic potential of two different glass-based materials (by-products from the ceramic sector) as inorganic slow-release iron (Fe) fertilizers. RESULTS: The X-ray powder diffraction confirmed the presence of amorphous structure and the richness in Fe of the investigated materials. The solubility analysis highlighted the slow Fe release from the glassy network and that the maximum of the Fe release was at alkaline pH suggesting their potential use as slow-release Fe fertilizers, especially in calcareous soils. The pot and leaching experiments demonstrated that although the glass-based materials increased the amount of soil available Fe, we did not observe Fe leaching and plant toxicity. This fact would suggest their reliability to increase soil fertility without negative effects on the environment. CONCLUSION: The use of glass-based materials, specifically by-products from the ceramic sectors, as inorganic slow-release Fe fertilizers can be sustained. The tests performed at three different pH conditions testified the slow-release behaviour of the tested materials and underlined that the Fe release increases at alkaline environment. Therefore, the present study pointed out the glass-based materials by products from the ceramic sector as novel slow-release and environmental-friendly fertilizers in agriculture.

3.
Plants (Basel) ; 10(8)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34451675

RESUMO

Selenium is an essential micronutrient that provides important benefits to plants and humans. At proper concentrations, selenium increases plant growth, pollen vitality, the shelf life of fresh products, and seems to improve stress resistance; these effects can certainly be attributed to its direct and indirect antioxidant capacity. For these reasons, in the present work, the effects of selenium at different dosages on in vitro cultivated olive explants were investigated to observe possible positive effects (in terms of growth and vigor) on the proliferation phase. The work was carried out on four different olive cultivars: "San Felice", "Canino", "Frantoio", and "Moraiolo". The explants were cultured in aseptic conditions on olive medium (OM), with the addition of 4 mg·L-1 of zeatin, 30 g·L-1 of sucrose, and 7 g·L-1 of agar. The experimental scheme included a comparison between explants grown with five different concentrations of Na2SeO4 (0, 10, 20, 40, and 80 mg L-1) added to the medium during three successive subcultures. Interesting information has emerged from the results and all varieties responded to different concentrations of Selenium. The optimal Se dosages varied for each cultivar, but in general, Se concentration between 10 and 40 mg L-1 increased fresh and dry weight of the explants and shoot lengths. Se treatment induced in all cultivars and for all dosages used an increase in total Se content in proliferated explants. Furthermore, as the subcultures proceeded, the ability of the explants to absorb Se did not diminish. The Se content ranged from 8.55 to 114.21 µg kg-1 plant DW in 'Frantoio', from 9.83 to 94.85 µg kg-1 plant DW in 'Moraiolo', from 19.84 to 114.21 µg kg-1 plant DW in 'Canino', and from 20.97 to 95.54 µg kg-1 plant DW in 'San Felice'. In general, the effect of selenium tends to decrease with the progress of subcultures and this suggests a sort of "adaptation" effect of the explants to its presence. The present study highlights for the first time the possibility of using in vitro cultures as biotechnological support to study supplementation with selenium and its effects on in vitro olive plant growth.

4.
Int J Mol Sci ; 22(15)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34360556

RESUMO

In grapevines, as in other plants, sucrose and its constituents glucose and fructose are fundamentally important and carry out a multitude of roles. The aims of this review are three-fold. First, to provide a summary of the metabolism and transport of sucrose in grapevines, together with new insights and interpretations. Second, to stress the importance of considering the compartmentation of metabolism. Third, to outline the key role of acid invertase in osmoregulation associated with sucrose metabolism and transport in plants.


Assuntos
Metabolismo dos Carboidratos , Frutas/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Sacarose/metabolismo , Vitis/metabolismo , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Vitis/crescimento & desenvolvimento
5.
J Sci Food Agric ; 101(9): 3981-3986, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33336798

RESUMO

BACKGROUND: Olive, as a non-climacteric fruit, is presumed to be ethylene independent with regard to ripening triggering/coordination. Nevertheless, studies have demonstrated that postharvest ethylene treatments induce changes in composition and properties also of non-climacteric fruits, including aroma profiles, a key quality parameter of extra virgin olive oils. Olive fruit of cv. 'Leccino' harvested at two distinct ripening stages (less advanced ripening, LAR; and more advanced ripening, MAR, with Jaén index of 4.58 and 5.10, respectively) were subjected to ethylene (1000 ppm in air) treatment for 24 h before oil extraction. RESULTS: Based on multivariate analysis of volatile organic compound (VOCs), the effect of ethylene treatment appeared to be more pronounced in MAR samples. However, differences in organoleptic analysis were also detected in ethylene-treated LAR olive oils. Ethylene seems to selectively affect linolenic/linoleic acid metabolism, particularly concerning the C5 pathway, and reduce specific defect-associated compounds. CONCLUSION: Exogenous ethylene applied to cv. 'Leccino' olives before processing was effective in inducing specific changes in the VOC profiles of the resulting oil. The effect was different depending on the ripening stage of the harvested olives. The lipoxygenase pathway (including the production of C5 compounds) and fermentative-related compounds appeared to be affected by the treatment. © 2020 Society of Chemical Industry.


Assuntos
Etilenos/farmacologia , Frutas/química , Frutas/crescimento & desenvolvimento , Olea/efeitos dos fármacos , Azeite de Oliva/química , Reguladores de Crescimento de Plantas/farmacologia , Compostos Orgânicos Voláteis/química , Frutas/efeitos dos fármacos , Frutas/metabolismo , Odorantes/análise , Olea/química , Olea/crescimento & desenvolvimento , Olea/metabolismo , Azeite de Oliva/isolamento & purificação , Compostos Orgânicos Voláteis/metabolismo
6.
Front Plant Sci ; 11: 573982, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281843

RESUMO

The partitioning of assimilates in fruits, which are economically important sink organs, is ruled by different physiological processes and affected by both environmental and agronomical factors. The bulk of the water and solutes, required for growth, is imported into fruits and seeds through xylem and phloem. In the stone fruits, five vascular bundles enter the base of the fruit, then dividing to supply either the flesh or the seed. The main sugars accumulated in stone fruits include fructose, glucose, and sucrose, along with other minor saccharides. The mechanisms of phloem loading in these fruit species have not been fully elucidated yet, but the available data hint either an apoplastic or a symplastic type or possibly a combination of both, depending on the species and the sugar considered. Similarly, phloem unloading mechanisms, elucidated for a small number of species, depend on genotype and developmental stage. Remarkably, key enzymes and transporters involved in the main sugars-conversion and transport pathways have received considerable attention. In stone fruit trees, the presence of an elevated number of fruits alters the source-sink balance, with a consequent intensification of competition among them and between vegetative and reproductive growth. The main environmental factors affecting this balance and the agronomical/artificial manipulations of source-sink relationships to achieve adequate fruit production and quality are reviewed.

7.
Front Plant Sci ; 11: 549921, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240291

RESUMO

Non-structural carbohydrates are abundant constituents of the ripe flesh of all stone fruits. The bulk of their content comprises sucrose, glucose, fructose and sorbitol. However, the abundance of each of these carbohydrates in the flesh differs between species, and also with its stage of development. In this article the import, subcellular compartmentation, contents, metabolism and functions of non-structural carbohydrates in the flesh of commercially cultivated stone fruits of the family Rosaceae are reviewed.

8.
Front Plant Sci ; 11: 572601, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101339

RESUMO

Stone fruits of the Rosaceae family consist of several distinct parts, and these include the flesh, woody endocarp, and seed. To understand the metabolism of these fruits, it is necessary to have knowledge of both their structure and growth characteristics. The nitrogen metabolism of the different tissues of stone fruits is interlinked. For example, there is an import and storage of nitrogenous compounds in the endocarp that are then exported to the seed. Moreover, there are links between the metabolism of nitrogen and that of malic/citric acids. In this article, the structure and growth characteristics, together with the import/export, contents, metabolism, and functions of nitrogenous compounds and organic acids in the different parts of stone fruits and their seeds are reviewed.

9.
Front Plant Sci ; 11: 562252, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32983215

RESUMO

Phytochemicals or secondary metabolites present in fruit are key components contributing to sensory attributes like aroma, taste, and color. In addition, these compounds improve human nutrition and health. Stone fruits are an important source of an array of secondary metabolites that may reduce the risk of different diseases. The first part of this review is dedicated to the description of the main secondary organic compounds found in plants which include (a) phenolic compounds, (b) terpenoids/isoprenoids, and (c) nitrogen or sulfur containing compounds, and their principal biosynthetic pathways and their regulation in stone fruit. Then, the type and levels of bioactive compounds in different stone fruits of the Rosaceae family such as peach (Prunus persica), plum (P. domestica, P. salicina and P. cerasifera), sweet cherries (P. avium), almond kernels (P. dulcis, syn. P. amygdalus), and apricot (P. armeniaca) are presented. The last part of this review encompasses pre- and postharvest treatments affecting the phytochemical composition in stone fruit. Appropriate management of these factors during pre- and postharvest handling, along with further characterization of phytochemicals and the regulation of their synthesis in different cultivars, could help to increase the levels of these compounds, leading to the future improvement of stone fruit not only to enhance organoleptic characteristics but also to benefit human health.

10.
Front Plant Sci ; 11: 1054, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733527

RESUMO

Cell wall turnover and modification in its composition are key factors during stone fruit development and patterning. Changes in cell wall disassembly and reassembly are essential for fruit growth and ripening. Modifications in cell wall composition, resulting in the formation of secondary cell walls, are necessary for producing the most distinctive trait of drupes: the lignified endocarp. The contribution of primary metabolism to cell wall synthesis has been investigated in detail, while the knowledge on the contribution of the cell wall to primary metabolites and related processes is still fragmented. In this review, starting from peculiarities of cell wall of drupes cells (in mesocarp and endocarp layers), we discuss the structure and composition of cell wall, processes related to its modification and contribution to the synthesis of primary metabolites. In particular, our attention has been focused on the ascorbate synthesis cell wall-related and on the potential role of cyanogenic compounds in the deposition of the secondary cell wall.

11.
Plants (Basel) ; 9(3)2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32244853

RESUMO

Olive is one of the oldest cultivated species in the Mediterranean Basin, including Tunisia, where it has a wide diversity, with more than 200 cultivars, of both wild and feral forms. Many minor cultivars are still present in marginal areas of Tunisia, where they are maintained by farmers in small local groves, but they are poorly characterized and evaluated. In order to recover this neglected germplasm, surveys were conducted in different areas, and 31 genotypes were collected, molecularly characterized with 12 nuclear microsatellite (simple sequence repeat (SSR)) markers, and compared with 26 reference cultivars present in the Tunisian National Olive collection. The analysis revealed an overall high genetic diversity of this olive's germplasm, but also discovered the presence of synonymies and homonymies among the commercialized varieties. The structure analysis showed the presence of different gene pools in the analyzed germplasm. In particular, the marginal germplasm from Ras Jbal and Azmour is characterized by gene pools not present in commercial (Nurseries) varieties, pointing out the very narrow genetic base of the commercialized olive material in Tunisia, and the need to broaden it to avoid the risk of genetic erosion of this species in this country.

12.
Food Res Int ; 129: 108861, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32036874

RESUMO

The effects of pre-processing decreasing temperature (19, 15 and 10 °C) of olive fruit (cv. Leccino) harvested at three developmental stages (semi-ripe, ripe, advanced ripening) have been evaluated on oil in terms of basic quality parameters, composition, organoleptic traits, and aroma profiles. A total of 40 metabolites (volatiles and non-volatiles) were identified by 1H NMR and GC/MS analyses. Multivariate statistical analysis showed that samples obtained from ripe and advanced ripe olives cooled at 10 and 15 °C better correlated with C6 aldehydes, mainly associated with herbal/green olfactory traits. Compounds responsible for sweet/fruity traits were more abundantly present in oil extracted from 19 °C olive samples. Decreasing pulp temperature before crushing also resulted in reduced presence of 1-penten-3-ol, 1-penten-3-one, acetic acid and ethyl alcohol, associated with specific defects of the oil. Results indicate that slightly lowering fruit temperature just before crushing modulates oil composition by reducing oil off flavours while enhancing green and fresh attributes in particular when ripe olives are processed.


Assuntos
Manipulação de Alimentos , Frutas/química , Olea/química , Azeite de Oliva/química , Temperatura , Cromatografia Gasosa-Espectrometria de Massas
13.
Foods ; 8(10)2019 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-31614805

RESUMO

The characteristics of plum fruits of three different species were investigated throughout their development (including over-ripening). The content of primary and secondary metabolites was expressed as amount per gram DW (dry weight) and per fruit in order to obtain information about the balance between their synthesis and dissimilation at different stages of fruit development. In all the plums, during the first stages of development, glucose was the most abundant sugar, whereas sucrose increased during ripening. There was no decrease in malate content per fruit before the commercial harvesting time of any of the plums, whereas a decrease was observed during over-ripening. In general, both the total phenol content and the contents of individual phenols in the flesh expressed on gram DW decreased throughout development, whereas their content per fruit increased, indicating that these decreases were due to a dilution effect arising from the expansion of the flesh. During the development of the flesh, the increase in the contents of the investigated metabolites per fruit shows that there was no net dissimilation of malate up to commercial harvest and of phenols throughout fruit development. Good correlations between the content of phenols to antioxidant activity were found. Shiro flesh, during the last part of fruit development, had lower total carbohydrate and polyphenol contents, lower antioxidant activities, and a higher malate content than the flesh of the other two genotypes.

14.
Evol Appl ; 11(8): 1465-1470, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30151053

RESUMO

This study was carried out to examine the validity of previous studies on the intercompatibility of olive and to compare the approach and techniques used for proposing the diallelic self-incompatibility system and the sporophytic self-incompatibility system. Analysis of the literature indicates that the mating system of the olive tree is a controversial issue and requires further studies to clearly and fully comprehend it. All possible approaches should be used to maximize reliability of the final conclusions on the olive mating system.

15.
Plant Physiol Biochem ; 130: 324-333, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30041084

RESUMO

Two pathways can be used by gluconeogenesis in plants: one employs phosphoenolpyruvate carboxykinase (PEPCK) and the other pyruvate orthophosphate dikinase (PPDK). The occurrence-location of these enzymes was determined in developing kernels of maize. PPDK was much more abundant than PEPCK in extracts of whole kernels. However, their location within the kernel was different. PPDK was particularly abundant in the peripheral endosperm (in which alanine is abundant), whereas PEPCK was localised in the pedicel and basal endosperm transfer cells (where asparagine is metabolised). The abundance of these enzymes was also determined in maize roots where there was a massive increase in abundance of PEPCK and a small increase in abundance of PPDK when they were fed ammonium; PEPCK was located in the pericycle and various cell types associated with the vasculature. On the other hand, there was a large increase in abundance of PPDK in roots subjected to anoxia (which induces an accumulation of alanine), whereas the abundance of PEPCK was decreased. These results show: firstly, that gluconeogenesis can potentially occur in many different tissues of maize. Secondly, within one organ PPDK can be abundant in some tissues and PEPCK in others. Thirdly, the abundance of PPDK and PEPCK is often associated with the metabolism of certain nitrogenous compounds and can be dramatically altered by factors related to nitrogen metabolism. In maize roots and developing kernels PPDK was associated with alanine metabolism. By contrast, the presence of PEPCK in maize roots and kernels was associated with either ammonium or asparagine metabolism. We propose that gluconeogenesis is often a component of a widespread mechanism that is used in coordinating the import/mobilisation of nitrogenous compounds with their utilisation. Further, potentially component of this mechanism may have provided building blocks that were used in the evolution of processes such as C4 photosynthesis, Crassulacean acid metabolism, stomatal metabolism and the biochemical pH stat.


Assuntos
Gluconeogênese , Nitrogênio/metabolismo , Zea mays/metabolismo , Grão Comestível/metabolismo , Eletroforese em Gel de Poliacrilamida , Immunoblotting , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Raízes de Plantas/metabolismo , Piruvato Ortofosfato Diquinase/metabolismo
16.
Tree Physiol ; 38(9): 1278-1285, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29452417

RESUMO

The amount of shoot stem (i.e., woody part of the shoot) dry matter per unit shoot leaf dry matter (i.e., the shoot wood to leaf biomass ratio) has been reported to be lower in short shoots than in long ones, and this is related to the greater and earlier ability of short shoots to export carbon. This is important in fruit trees, since the greater and earlier carbon export ability of shoots with a lower wood to leaf biomass ratio improves fruit production. This ratio may vary with cultivars, training systems or plant age, but no study has previously investigated the possible effect of fruit production. In this study on two olive cultivars (i.e., Arbequina, with low growth rate, and Frantoio, with high growth rate) subject to different fruit production treatments, we found that at increasing fruit production, shoot length and shoot wood to leaf biomass ratio were proportionally reduced in the new shoots growing at the same time as the fruit. Specifically, fruit production proportionally reduced total new-shoot biomass, length, leaf area and average shoot length. With decreasing shoot length, shoot diameter, stem mass, internode length, individual leaf area and shoot wood to leaf biomass ratio also decreased. This may be viewed as a plant strategy to better support fruit growth in the current year, given the greater and earlier ability of short shoots to export carbon. Moreover, at the whole-tree level, the percentage of total tree biomass production invested in leaves was closely correlated with branching density, which differed significantly across cultivars. By branching more, Arbequina concentrates more shoots (thus leaves) per unit of wood (trunk, branches and root) mass, decreasing wood to leaf biomass ratio at the whole-tree level. Therefore, while, at the shoot level, shoot length determines shoot wood to leaf biomass ratio, at the canopy level branching density is also an important determinant of whole-tree wood to leaf biomass ratio. Whole-tree wood to leaf biomass ratio is likely to affect the canopy's ability to export carbon (i.e., towards fruits), as shoot wood to leaf biomass ratio affects the carbon export ability of the shoot.


Assuntos
Frutas/crescimento & desenvolvimento , Olea/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Biomassa , Árvores/crescimento & desenvolvimento , Madeira/crescimento & desenvolvimento
17.
Tree Physiol ; 38(9): 1267-1277, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29474732

RESUMO

It has long been debated whether tree growth is source limited, or whether photosynthesis is adjusted to the actual sink demand, directly regulated by internal and environmental factors. Many studies support both possibilities, but no studies have provided quantitative data at the whole-tree level, across different cultivars and fruit load treatments. This study investigated the effect of different levels of reproductive growth on whole-tree biomass growth across two olive cultivars with different growth rates (i.e., Arbequina, slow-growing and Frantoio, fast-growing), over 2 years. Young trees of both cultivars were completely deflowered either in 2014, 2015, both years or never, providing a range of levels of cumulated reproductive growth over the 2 years. Total vegetative dry matter growth over the 2 years was assessed by destructive sampling (whole tree). Vegetative growth increased significantly less in fruiting trees, however, the total of vegetative and reproductive growth did not differ significantly for any treatment or cultivar. Vegetative growth over the 2 years was closely (R2 = 0.89) and inversely related to reproductive growth across all treatments and cultivars. When using data from 2015 only, the regression improved further (i.e., R2 = 0.99). When biomass was converted into grams of glucose equivalents, based on the chemical composition of the different parts, the results indicated that for every gram of glucose equivalent invested in reproductive growth, vegetative growth was reduced by 0.73-0.78 g of glucose equivalent. This indicates that competition for resources played a major role in determining tree growth, but also that photosynthesis was probably also enhanced at increasing fruit load (or downregulated at decreasing fruit load). The leaf area per unit of trunk cross sectional area increased with deflowering (i.e., decreased with reproductive growth), suggesting that water relations might have limited photosynthesis in deflowered plants, which had much greater canopies. Net assimilation rate (NAR) increased with reproductive growth and decreased with plant size. Net assimilation rate was also negatively correlated with the leaf area per unit of trunk cross sectional area, suggesting that water relations might have contributed to decreasing NAR at increasing plant size.


Assuntos
Olea/crescimento & desenvolvimento , Biomassa , Flores/fisiologia , Olea/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento
18.
Plant Foods Hum Nutr ; 72(4): 432-438, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29098640

RESUMO

Pomegranate (Punica granatum L.) fruits are used mainly by the juice industry, for which seeds are a by-product to be disposed of, though they could potentially be a source of bioactive compounds. In this work, germination (total germination percentage, G; mean germination time, MGT; time to reach 80% of germination, TG80; seedling shoot length, fresh weight and dry matter), and nutritional value (total phenolics, TP; total flavonoids, TF; total non-tannins, TNT; antioxidant activities) of pomegranate seeds and sprouts were determined on four commercial pomegranate cultivars (Akko, Dente di Cavallo, Mollar de Elche and Wonderful). Seeds were removed from ripe fruits and incubated in plastic trays containing sterile cotton wetted with distilled water. Sprout shoots were harvested when they reached the complete cotyledon expansion, i.e., the ready-to-eat stage. Akko showed the best germination performance (G = 98%; MGT = 14 days after sowing, DAS; TG80 = 16 DAS), followed by Mollar de Elche. Sprouting dramatically increased TP, TF, TNT and antioxidant activity in all genotypes, with the highest values recorded in Mollar de Elche and Dente di Cavallo. Overall, based on germination performance, Akko and Mollar de Elche would be the best cultivars for sprouting. Sprouting pomegranate seeds appears to be a suitable way of utilizing by-products of the juice industry to obtain bioactive compounds.


Assuntos
Lythraceae/genética , Fenóis/análise , Sementes/crescimento & desenvolvimento , Antioxidantes/análise , Flavonoides/análise , Indústria de Processamento de Alimentos , Sucos de Frutas e Vegetais , Genótipo , Germinação , Lythraceae/crescimento & desenvolvimento , Valor Nutritivo , Fenóis/metabolismo , Sementes/genética , Resíduos
19.
Plant Physiol Biochem ; 118: 618-626, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28802240

RESUMO

The effect of late summer - autumn limitation of phloem export on growth, photosynthesis and storage carbohydrate accumulation, was evaluated in walnut (Juglans regia L.). This was done by girdling current years shoots, with either all or with only a third of the leaves left in place. Nineteen days after girdling, photosynthesis was greatly reduced and after 46 days, it was about 70% lower in both girdling treatments compared to the control (ungirdled shoots). This reduction is consistent with a feed-back effect of an increased carbohydrate content of the leaves. At the end of the experiment (46 days after girdling), the radial growth of girdled shoots was increased at their base but not at their apical part compared to the control. Girdling increased the accumulation of sucrose in the bark at the base of the shoot and of starch in the bark and in the wood of the shoot apical part. The activity of ADP-glucose pyrophosphorylase in wood increased in the apical part of girdled shoots. The results suggest that a high availability of carbohydrates elicits a feed-forward action on the shoot sink size and activity (radial growth and storage carbohydrate accumulation). Further, for the first time in tree wood we found an increased total activity of AGP induced by an increased assimilate availability. Moreover, the results indicated that, in late summer - autumn, CO2 uptake by leaves of the deciduous tree walnut is strongly dependent on export of photosynthates from the crown. Therefore, carbon uptake in this period depends largely on the availability of effective storage sinks where newly produced assimilates can be accumulated.


Assuntos
Metabolismo dos Carboidratos/fisiologia , Juglans/metabolismo , Fotossíntese/fisiologia , Brotos de Planta/metabolismo , Estações do Ano , Amido/biossíntese
20.
Plant Physiol Biochem ; 112: 9-18, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28012288

RESUMO

Peach leaf curl is a disease that affects the leaves of peach trees, and in severe cases all of the leaf can be similarly affected. This study investigated some effects of this disease on the metabolism of peach leaves in which all parts of the leaf were infected. These diseased leaves contained very little chlorophyll and performed little or no photosynthesis. Compared to uninfected leaves, diseased leaves possessed higher contents of fructose and especially glucose, but lowered contents of sucrose, sorbitol and especially starch. The activities of soluble acid invertase, neutral invertase, sorbitol dehydrogenase and sucrose synthase were all higher in diseased leaves, whereas, those of aldose-6-phosphate reductase and sucrose phosphate synthase were lower. The activities of hexokinase and fructokinase were little changed. In addition, immunblots showed that the contents of Rubisco and ADP-glucose phosphorylase were reduced in diseased leaves, whereas, the content of phosphoenolpyruvate carboxylase was increased. The results show that certain aspects of the metabolism of diseased leaves are similar to immature sink leaves. That is photosynthetic function is reduced, the leaf imports rather than exports sugars, and the contents of non-structural carbohydrates and enzymes involved in their metabolism are similar to sink leaves. Further, the effects of peach leaf curl on the metabolism of peach leaves are comparable to the effects of some other diseases on the metabolism of photosynthetic organs of other plant species.


Assuntos
Metabolismo dos Carboidratos , Doenças das Plantas/microbiologia , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Prunus persica/metabolismo , Prunus persica/microbiologia , Carboidratos/análise , Fotossíntese , Folhas de Planta/enzimologia , Proteínas de Plantas/metabolismo , Prunus persica/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...