Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 748: 141375, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33113681

RESUMO

Storm runoff is important for maintaining surface water resources, while this function is significantly affected by land use and land cover changes, e.g., afforestation and reforestation. The Chinese Loess Plateau (CLP) has undergone large-scale vegetation rehabilitation, especially afforestation over the past 20 years. We hypothesize that afforestation has profoundly changed the amounts and mechanisms of storm runoff generation in headwater catchments on the CLP. To test this hypothesis, rainfall, soil moisture, and streamflow were monitored in a grass catchment and an adjacent forest catchment for two consecutive years. The objective of this study was to elucidate the varied mechanisms of storm runoff generation in these two contrasting revegetated catchments. Results showed that (1) average runoff coefficient in the grassland catchment (0.042) was approximately ten times higher than that in the forestland catchment (0.004), confirming the impact of catchment afforestation on the suppression of storm runoff generation. (2) Peak rainfall intensity was the first-order control of the runoff coefficient in the grassland catchment, but not in the forestland catchment. (3) Threshold values for antecedent soil moisture (~18%) and the sum of antecedent soil moisture index and event precipitation (~210 mm) were identified in the grassland catchment, above which storm runoff significantly increased. (4) Two extraordinary high runoff coefficient events were observed in the grassland catchment, one due to high peak rainfall intensity and strong surface runoff and the other due to high rainfall amount and high antecedent soil moisture. We conclude that long-term afforestation has changed the mechanisms and patterns of storm runoff generation, and different conditions of rainfall intensity, rainfall amount and antecedent soil moisture determined the hydrological connectivity between the upper hillslope and downhill gully in the catchment. This study deepens our understanding of the mechanisms and thresholds of storm runoff generation in headwater catchments on the CLP.


Assuntos
Chuva , Movimentos da Água , Hidrologia , Poaceae , Solo
2.
Artigo em Inglês | MEDLINE | ID: mdl-31795105

RESUMO

Water resource security is an important condition for socio-economic development. Recently, the process of urbanization brings increasing pressures on water resources. Thus, a good understanding of harmonious development of urbanization and water resource security (WRS) systems is necessary. This paper examined the coordination state between urbanization and WRS and its obstacle factors in Beijing city, utilizing the improved coupling coordination degree (ICCD) model, obstacle degree model, and indicator data from 2008 to 2017. Results indicated that: (1) The coupling coordination degree between WRS and urbanization displayed an overall upward tendency during the 2008-2017 period; the coupling coordination state has changed from an imbalanced state into a good coordination state, experiencing from a high-speed development stage (2008-2010), through a steady growth stage (2010-2014), towards a low-speed growth (2014-2017). (2) In urbanization system, both the social and spatial urbanizations have the greatest obstruction to the development of urbanization-WRS system. The subsystems of pressure and state are the domain obstacle subsystems in WRS system. These results can provide important support for urban planning and water resource protection in the future, and hold great significance for urban sustainable development.


Assuntos
Urbanização , Recursos Hídricos/provisão & distribução , China/epidemiologia , Cidades/epidemiologia , Planejamento de Cidades , Conservação dos Recursos Naturais , Desenvolvimento Econômico , Humanos , Modelos Teóricos
3.
Sci Rep ; 4: 6749, 2014 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-25343265

RESUMO

The observed decline of spring dust storms in Northeast Asia since the 1950s has been attributed to surface wind stilling. However, spring vegetation growth could also restrain dust storms through accumulating aboveground biomass and increasing surface roughness. To investigate the impacts of vegetation spring growth on dust storms, we examine the relationships between recorded spring dust storm outbreaks and satellite-derived vegetation green-up date in Inner Mongolia, Northern China from 1982 to 2008. We find a significant dampening effect of advanced vegetation growth on spring dust storms (r = 0.49, p = 0.01), with a one-day earlier green-up date corresponding to a decrease in annual spring dust storm outbreaks by 3%. Moreover, the higher correlation (r = 0.55, p < 0.01) between green-up date and dust storm outbreak ratio (the ratio of dust storm outbreaks to times of strong wind events) indicates that such effect is independent of changes in surface wind. Spatially, a negative correlation is detected between areas with advanced green-up dates and regional annual spring dust storms (r = -0.49, p = 0.01). This new insight is valuable for understanding dust storms dynamics under the changing climate. Our findings suggest that dust storms in Inner Mongolia will be further mitigated by the projected earlier vegetation green-up in the warming world.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA