Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 837
Filtrar
1.
Chemosphere ; 247: 125987, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-32069736

RESUMO

Bisphenol analogs (BPs), as the industrial chemicals, are widely used in consumer products. Limited information exists regarding human exposure to BPs in university students in China. In this study, we detected concentrations of seven BPs, namely bisphenol A (BPA), bisphenol AF (BPAF), bisphenol P (BPP), bisphenol AP (BPAP), bisphenol Z (BPZ), bisphenol S (BPS), and bisphenol F (BPF), in paired urine (n = 160) and indoor dust samples (n = 40) from university students in South China. High detection rates and levels (median) was found in BPA in paired urine (99%, 3.57 ng/mL) and indoor dust (80%, 2.98 µg/g) samples, followed by BPS (88%, 0.24 ng/mL; 78%, 0.22 µg/g). These findings suggest that BPA remains the major BPs used in consumer products. A positive relationship between urinary ∑BPs (sum of six BPs) concentration and indoor dust was observed (r = 0.444, p < 0.01), indicated that exposure to non-dietary BPs may also be significant to human exposure. The median EDIurine values (ng/kg bw/day) of ∑BPs in males (119.6) were relatively higher than (p < 0.05) those in females (84.6). By contrast, the median EDIdust of BPs (except for BPAF) in dust form female dormitories were slightly higher than that in dust from male dormitories. Notably, BPF was the most ingested from indoor dust (dormitory dust). This study is the first time to document the occurrence of BPs in paired urine and indoor dust in university students from China.

2.
Diagn Pathol ; 15(1): 8, 2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32005261

RESUMO

BACKGROUND: Gastrointestinal stromal tumors (GISTs) are the most common type of adult mesenchymal neoplasms. The events that drive GIST oncogenesis are primarily KIT or PDGFRA mutations, which lead to the susceptibility of these tumors to small-molecule tyrosine kinase inhibitors such as imatinib and sunitinib. However, previous studies have shown that patients with a PDGFRA D842V mutation in GISTs have a very low rate of response to imatinib treatment. Therefore, novel tyrosine kinase inhibitors (TKIs) are currently being evaluated in clinical trials to treat GISTs harboring a PDGFRA D842V mutation. Anaplastic lymphoma kinase (ALK) overexpression was not expected to be present in the GIST, and it has been used as a biomarker to distinguish GISTs from other types of mesenchymal tumors. CASE PRESENTATION: Here, we report a 37-year-old male patient who presented with a large mass in the right upper abdomen and was subsequently diagnosed with a GIST harboring a PDGFRA D842V mutation. We unexpectedly found that the GIST in this patient exhibited simultaneous ALK expression. CONCLUSIONS: This is the first case reported of a GIST with ALK expression. This rare phenomenon suggests that the diagnosis of a GIST cannot be excluded absolutely if a tumor exhibits ALK expression. In addition, ALK may be a potential therapeutic target for patients with imatinib-resistant stromal tumors.

3.
Biochem Pharmacol ; 174: 113845, 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32032581

RESUMO

The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor. Triple negative breast cancer (TNBC) is the most aggressive breast cancer subtype. TNBC expresses AHR and AHR ligands have anti-cancer activity in TNBC. The aggressiveness of TNBC is due in part to JAG1-NOTCH1 signaling. ITE is a putative endogenous AHR ligand. We show that ITE reduces the expression of JAG1 the amount of Notch 1 intracellular domain (NICD1) and the phosphorylation of STAT3 (at tyrosine 705) in TNBC MDA-MB-231 cells. The STAT3 inhibitor STATTIC also reduced JAG1. STAT3, thus, mediates regulation of JAG1 in MDA-MB-231 cells. Reducing the expression of JAG1 with short interfering RNA decreases the growth, migration and invasiveness of MDA-MB-231 cells. JAG1, therefore, has cellular effects in MDA-MB-231 cells under basal conditions. We consequently evaluated if exposing cells to greater amounts of JAG1 would counteract ITE cellular effects in MDA-MB-231 cells. The results show that JAG1 does not counteract the cellular effects of ITE. JAG1, thus, has no effect on growth or invasiveness in MDA-MB-231 cells treated with ITE. JAG1, therefore, has context dependent roles in MDA-MB-231 cells (basal versus ITE treatment). The results also show that other pathways, not inhibition of the JAG1-NOTCH1 pathway, are important for mediating the growth and invasive inhibitory effect of ITE on MDA-MB-231 cells.

4.
Molecules ; 25(3)2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32050529

RESUMO

Crosslinking is an effective way to improve the physiochemical and biochemical properties of hydrogels. In this study, we describe an interpenetrating polymer network (IPN) of alginate/gelatin hydrogels (i.e., A-G-IPN) in which cells can be encapsulated for in vitro three-dimensional (3D) cultures and organ bioprinting. A double crosslinking model, i.e., using Ca2+ to crosslink alginate molecules and transglutaminase (TG) to crosslink gelatin molecules, is exploited to improve the physiochemical, such as water holding capacity, hardness and structural integrity, and biochemical properties, such as cytocompatibility, of the alginate/gelatin hydrogels. For the sake of convenience, the individual ionic (i.e., only treatment with Ca2+) or enzymatic (i.e., only treatment with TG) crosslinked alginate/gelatin hydrogels are referred as alginate-semi-IPN (i.e., A-semi-IPN) or gelatin-semi-IPN (i.e., G-semi-IPN), respectively. Tunable physiochemical and biochemical properties of the hydrogels have been obtained by changing the crosslinking sequences and polymer concentrations. Cytocompatibilities of the obtained hydrogels are evaluated through in vitro 3D cell cultures and bioprinting. The double crosslinked A-G-IPN hydrogel is a promising candidate for a wide range of biomedical applications, including bioartificial organ manufacturing, high-throughput drug screening, and pathological mechanism analyses.

5.
Emerg Microbes Infect ; 9(1): 332-340, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32037983

RESUMO

The seroprevalenc of autoimmune hepatitis (AIH)-related antibodies in patients, particularly Asians, with acute hepatitis E (AHE) is unclear. In this study, we investigated whether acute hepatitis E virus (HEV) infection is associated with the seroprevalence of AIH-related autoantibodies and assessed their impact on the disease characteristics. AIH-related autoantibodies were detected by indirect immunofluorescence in 198 AHE patients and 50 type 1 AIH patients. The positivity rates of against nuclear antigen (ANA) and smooth muscles antibody (SMA) in AHE patients were 37.4% and 22.7%, and the total positivity rate was 50%. Compared to those in AIH patients, the positivity rates of ANA-H and SMA-AA were significantly lower (35.1% vs. 82.1% and 4.4% vs. 88.4%). Female gender and the ALT level, but not immunosuppressive or antiviral drugs, were independently predictive of the presence of AIH-related autoantibodies in AHE patients. Fifty-two patients positive for AIH-related autoantibodies were followed up for 12 months. During this period, 33 of them became negative and 19 remained positive, albeit with significantly decreased titres. In conclusions, the seroprevalence of AIH-related autoantibodies in AHE patients was elevated, particularly in females, but their subspecificities and titres differed from those of type 1 AIH. Acute HEV infection may be related to AIH.Abbreviations: AIH: autoimmune hepatitis; AHE: acute hepatitis E; ANA: against nuclear antigen; SMA: smooth muscles antibody; ANA-H: ANA with homogeneous pattern; SMA-AA: SMA with anti-actin pattern; Anti-LKM1: anti- liver-kidney microsomes-1 antibody; ANCA: anti-neutrophil cytoplasmic antibody; AMA: anti-mitochondrial antibody; Anti-SLA: anti-soluble liver antigen; Anti-LC1: anti-liver cytoplasmic type 1 antibody; pANCA: perinuclear antineutrophil cytoplasmic antibody.

6.
Science ; 367(6475): 272-277, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31949075

RESUMO

One great challenge in understanding the history of life is resolving the influence of environmental change on biodiversity. Simulated annealing and genetic algorithms were used to synthesize data from 11,000 marine fossil species, collected from more than 3000 stratigraphic sections, to generate a new Cambrian to Triassic biodiversity curve with an imputed temporal resolution of 26 ± 14.9 thousand years. This increased resolution clarifies the timing of known diversification and extinction events. Comparative analysis suggests that partial pressure of carbon dioxide (Pco2) is the only environmental factor that seems to display a secular pattern similar to that of biodiversity, but this similarity was not confirmed when autocorrelation within that time series was analyzed by detrending. These results demonstrate that fossil data can provide the temporal and taxonomic resolutions necessary to test (paleo)biological hypotheses at a level of detail approaching those of long-term ecological analyses.

7.
J Biomol Tech ; 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31966025

RESUMO

Small RNAs (smRNAs) are important regulators of many biologic processes and are now most frequently characterized using Illumina sequencing. However, although standard RNA sequencing library preparation has become routine in most sequencing facilities, smRNA sequencing library preparation has historically been challenging because of high input requirements, laborious protocols involving gel purifications, inability to automate, and a lack of benchmarking standards. Additionally, studies have suggested that many of these methods are nonlinear and do not accurately reflect the amounts of smRNAs in vivo. Recently, a number of new kits have become available that permit lower input amounts and less laborious, gel-free protocol options. Several of these new kits claim to reduce RNA ligase-dependent sequence bias through novel adapter modifications and to lessen adapter-dimer contamination in the resulting libraries. With the increasing number of smRNA kits available, understanding the relative strengths of each method is crucial for appropriate experimental design. In this study, we systematically compared 9 commercially available smRNA library preparation kits as well as NanoString probe hybridization across multiple study sites. Although several of the new methodologies do reduce the amount of artificially over- and underrepresented microRNAs (miRNAs), we observed that none of the methods was able to remove all of the bias in the library preparation. Identical samples prepared with different methods show highly varied levels of different miRNAs. Even so, many methods excelled in ease of use, lower input requirement, fraction of usable reads, and reproducibility across sites. These differences may help users select the most appropriate methods for their specific question of interest.

8.
J Sep Sci ; 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31909564

RESUMO

Diclazuril has been widely used in poultry feed for prevention and treatment of coccidiosis, and its chiral separation is rarely reported. Herein, semi-preparative separation method of diclazuril enantiomers has been developed through normal-phase high-performance liquid chromatography. Effects of chiral stationary phases, alcoholic modifiers, and column temperature on separation of diclazuril were discussed in detail. Both the single-urea-bound 4-chlorophenylcarbamoylated ß-cyclodextrin and amylose tris(3,5-dimethylphenylcarbamate)-coated chiral stationary phases showed strong ability in separation of diclazuril by using n-hexane-trifluoroacetic acid-ethanol. Then, semi-preparative separation of diclazuril was carried out through stacked injection, and the "enantiomeric excess" purities of two fractions were over 98%. Next, the electronic circular dichroism profiles of these two fractions in ethanol solution displayed the mirror image of each other in the range 360-200 nm. Moreover, effects of acidic/basic additive, time, and temperature on racemization of diclazuril enantiomers in ethanol solution have been studied in detail through normal-phase high-performance liquid chromatography. Racemization of diclazuril enantiomers was remarkably accelerated through adding triethylamine at high temperature. We envision that this systematic investigation of diclazuril at an enantiomeric level would provide valuable information in future studies involving enantioselective bioactive, metabolic, and toxicological activities.

10.
Int J Mol Med ; 45(3): 947-955, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31922248

RESUMO

Early repolarization syndrome (ERS) is associated with genetic mutations, but the role of the glycerol­3­phosphate dehydrogenase 1­like (GPD1­L) mutation remains unclear. The aim of the present study was to investigate the role and potential underlying mechanism of GPD1­L mutation P112L in the pathogenesis of ERS. Whole­genome sequencing was performed on samples from a family with ERS, and the gene sequencing results were analyzed using bioinformatics. 293 cells were transfected with wild­type (WT) or mutant­type (MT) GPD1­L and SCN5A plasmids. Successful transfection of GPD1­L in 293 cells was verified by western blotting. Whole­cell patch­clamp recording, confocal microscopic observation and western blotting were used to uncover the potential mechanism of GPD1­L P112L in ERS. The results of western blotting indicated that the expression of the GPD1­L protein was lower in the MT group compared with that in the WT group, but the mock group did not express the GPD1­L protein. The whole­cell patch­clamp recording results indicated that the activation current density of INa (at ­30 mV) was ~60% lower in the MT group compared with the WT group (P<0.01). The mutation caused the inactivation voltage to move in a negative direction by ~3 mV compared with that of the WT group. However, there were no significant between­group differences in the steady activation, steady inactivation, and steady recovery of INa. Confocal microscopy demonstrated that MT GPD1­L was less expressed near the cell membrane and more expressed in the cytoplasm compared with WT GPD1­L. Both WT and MT GPD1­L were highly expressed in the cytoplasm and in small amounts in the nucleus. In conclusion, the GPD1­L P112L mutation decreased INa activation and GPD1­L cell expression, including in the region near the cell membrane. These results suggest that GPD1­L P112L may be a pathogenic genetic mutation associated with ERS.

11.
Cancer Discov ; 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31974171

RESUMO

Type I interferons (IFN), which activate many IFN-stimulated genes (ISG), are known to regulate tumorigenesis. However, little is known regarding how various ISGs coordinate with one another in developing antitumor effects. Here, we report that the ISG UBA7 is a tumor suppressor in breast cancer. UBA7 encodes an enzyme that catalyzes the covalent conjugation of the ubiquitin-like protein product of another ISG (ISG15) to cellular proteins in a process known as "ISGylation." ISGylation of other ISGs, including STAT1 and STAT2, synergistically facilitates production of chemokine-receptor ligands to attract cytotoxic T cells. These gene-activation events are further linked to clustering and nuclear relocalization of STAT1/2 within IFN-induced promyelocytic leukemia (PML) bodies. Importantly, this coordinated ISG-ISGylation network plays a central role in suppressing murine breast cancer growth and metastasis, which parallels improved survival in patients with breast cancer. These findings reveal a cooperative IFN-inducible gene network in orchestrating a tumor-suppressive microenvironment. SIGNIFICANCE: We report a highly cooperative ISG network, in which UBA7-mediated ISGylation facilitates clustering of transcription factors and activates an antitumor gene-expression program. These findings provide mechanistic insights into immune evasion in breast cancer associated with UBA7 loss, emphasizing the importance of a functional ISG-ISGylation network in tumor suppression.

12.
Lab Med ; 51(1): 74-79, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31150544

RESUMO

OBJECTIVE: To assess the rate of, and risk factors for, human cytomegalovirus viremia (HCMV) in donor+/recipient+ (HCMV serostatus matched) hematopoietic stem-cell transplantation (HSCT) recipients. METHODS: HCMV DNA from 144 donor+/recipient+ HSCT recipients was examined by quantitative polymerase chain reaction (qPCR). RESULTS: The cumulative incidence of HCMV viremia was 69.4% (100/144) during the 48 weeks after HSCT. In a multivariate analysis, acute graft-versus-host disease (aGVHD) was discovered to be a risk factor for the occurrence of HCMV viremia (P = .006). The cumulative incidence of HCMV viremia and increasing DNA loads were significantly associated with aGVHD occurrence (P = .001 for each). The occurrence of late-term HCMV viremia was associated with aGVHD (P = .001) and a higher DNA load during the first 12 weeks after HSCT (P = .04). CONCLUSIONS: aGVHD is a risk factor for HCMV viremia. Recipients with aGVHD who have a high HCMV DNA load should be strictly monitored to prevent HCMV activation.

13.
J Hazard Mater ; 384: 121484, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31653409

RESUMO

Developing and designing a rational heterojunction with efficient charge kinetics properties have been a research hotspot for improving photocatalytic performance. Herein, a surface plasmons coupled two-dimensional chemical Au/Bi2WO6-MoS2 heterojunction was synthesized. In thus a system, Au nanoparticles are tightly attached to the sides of Bi2WO6 nanosheets, conducting a HEI effect with additional visible light response to inject "hot electrons" into Bi2WO6, resulting in additional charge generation. Meanwhile, few-layer MoS2 nanosheets were chemically assembled onto ultrathin Bi2WO6 nanosheets via interfacial SO bonds to form a intimate 2D-2D nanojunction, the separated and injected electrons on the surface of Bi2WO6 were further directional transfer to MoS2 nanosheets through SO bonds for detoxification of heavy metal ions Cr(VI), and the corresponding holes left on Bi2WO6 nanosheets were applied for simultaneous degradation of tetracycline antibiotic. The photocatalytic detoxification activity of Au/Bi2WO6-MoS2 was nearly 4.84, 3.47 and 1.90 times higher than that of pristine Bi2WO6, Au/Bi2WO6 and Bi2WO6-MoS2 composites, which could be ascribed to the effective charge kinetics steering and well manipulation of charge flow by virtue of the rational structural and compositional features. This work provides a new perspective for the construction of high-activity detoxification photocatalysts through steering charge kinetics.

14.
Nucleic Acids Res ; 48(D1): D70-D76, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31722421

RESUMO

The European Nucleotide Archive (ENA, https://www.ebi.ac.uk/ena) at the European Molecular Biology Laboratory's European Bioinformatics Institute provides open and freely available data deposition and access services across the spectrum of nucleotide sequence data types. Making the world's public sequencing datasets available to the scientific community, the ENA represents a globally comprehensive nucleotide sequence resource. Here, we outline ENA services and content in 2019 and provide an insight into selected key areas of development in this period.

15.
Microb Biotechnol ; 13(1): 134-147, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30672132

RESUMO

Bacteriocins are regarded as important factors mediating microbial interactions, but their exact role in community ecology largely remains to be elucidated. Here, we report the characterization of a mutant strain, derived from Pseudomonas syringae pv. tomato DC3000 (Pst), that was incapable of growing in plant extracts and causing disease. Results showed that deficiency in a previously unannotated gene saxE led to the sensitivity of the mutant to Ca2+ in leaf extracts. Transposon insertions in the bacteriocin gene syrM, adjacent to saxE, fully rescued the bacterial virulence and growth of the ΔsaxE mutant in plant extracts, indicating that syrM-saxE encode a pair of bacteriocin immunity proteins in Pst. To investigate whether the syrM-saxE system conferred any advantage to Pst in competition with other SyrM-sensitive pathovars, we compared the growth of a SyrM-sensitive strain co-inoculated with Pst strains with or without the syrM gene and observed a significant syrM-dependent growth reduction of the sensitive bacteria on plate and in lesion tissues upon desiccation-rehydration treatment. These findings reveal an important biological role of SyrM-like bacteriocins and help to understand the complex strategies used by P. syringae in adaptation to the phyllosphere niche in the context of plant disease.

16.
Anal Chim Acta ; 1095: 212-218, 2020 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-31864625

RESUMO

Sensitive and selective detection of miRNA is of great significance for the early diagnosis of human diseases, especially for cancers. Quartz crystal microbalance (QCM) is an effective tool for detecting biological molecules; however, the application of QCM for miRNA detection is still very limited. One of the great needs for QCM detection is to further improve the QCM signal. Herein, for the first time, we promote a new signal enhancement strategy for the detection of miRNA by QCM. First, a hairpin biotin-modified DNA was used as a probe DNA, which exposes the biotin site when interacting with target miRNA. Then, a streptavidin@metal-organic framework (SA@MOF) complex formed by electrostatic attractions between SA and a MOF was introduced into the QCM detection system. The SA@MOF complexes serve as both a signal amplifier and a specific recognition element via specific biotin-SA interactions. The strategy was applied to the detection of a colorectal cancer marker, miR-221, by using a stable Zr(IV)-MOF, UiO-66-NH2. The detection linear range was 10 fM-1 nM, the detection limit was 6.9 fM, and the relative standard deviation (RSD) (n = 5) was lower than 10% in both simulated conditions and the real serum environment. Furthermore, the detection limit reached 0.79 aM when coupled with the isothermal exponential amplification reaction (EXPAR).

17.
J Biomed Mater Res A ; 108(1): 19-29, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31430044

RESUMO

The objective of this study was to fabricate an acellular sheep periosteum and explore its potential application in guided bone regeneration. Sheep periosteum was collected and decellularized by a modified decellularization protocol. The effectiveness of cell removal was proved by hematoxylin and eosin and 4',6-diamidino-2-phenylindole staining, DNA quantitative test, and agarose gel electrophoresis. After decellularization, its microstructure was found to become more porous while the integrality of collagen fibers remained undamaged, and the contents of collagen and glycosaminoglycan were not decreased significantly. Biomechanical analysis showed that the elastic modulus was significantly declined, while the yield stress was not affected, probably due to the collagen integrality. In vitro study of CCK-8 assay demonstrated that the acellular periosteum not only had no toxic effect to the MC3T3-E1 cells, but benefited the cell proliferation to some degree. In vivo experiment of guided bone regeneration was performed using a rabbit cranial model. Micro-CT and histological results revealed that the acellular periosteum not only effectively prevented the ingrowth of fibrous connective tissues, but also potentially facilitated bone regeneration. In conclusion, acellular sheep periostea, with wider sources, less costs, and more convenient fabrication process, would have great potential in the employment for guided bone regeneration.

18.
J Hazard Mater ; 381: 121006, 2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31442686

RESUMO

Here, a novel CuBi2O4/Bi2MoO6 (CBO/BMO) p-n heterojunction was fabricated and exhibited markedly improved photocatalytic inactivation capacity of E. coli cells under visible light excitation (λ > 420 nm) compared with pure CuBi2O4 and Bi2MoO6. The CBO/BMO-0.5 hybrid displayed the highest photoinactivation ability which could completely inactivate the E. coli cellswithin 4 h. The mechanism of photocatalytic disinfection towards E. coli of CBO/BMO heterojunctions was attributed to the disruption of cell-membrane, leakage and damage of cellular content including total protein and DNA as verified with SEM, fluorescence-base dead/live stain, sodium dodecyl sulfate polyacrylamide gel electropheresis (SDS-PAGE) and agarose gel electrophoresis (AGE). Additionally, the scavenge experiments showed that the reactive species h+, e- and •O2-play the predominant role in the photocatalytic system of CBO/BMO hybrids. The improved photocatalytic activity of CBO/BMO composites was mainly attributed to the promotion of spatial separation and migration rate of photoproduced electron-hole pairs, enhancement of visible light absorption and more generation of reactive species (•O2-) on the interface of catalyst and water which was demonstrated by nitroblue tetrazolium (NBT) and EPR. Our work indicated that construction of CuBi2O4/Bi2MoO6 p-n heterostructure photocatalyst is a promising environmental friendly alternative method to deal with the biohazards of pathogenic microorganisms.

19.
Onco Targets Ther ; 12: 9129-9142, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31806998

RESUMO

Background: Radiotherapy does not show good efficacy against laryngeal cancer due to radioresistance. Cancer stem cells (CSCs) are considered among the causes of radioresistance. Inhibition of glucose transporter-1 (GLUT-1) using GLUT-1 small interfering RNA (siRNA) may enhance the radiosensitivity of laryngeal cancer cells, but the underlying cellular mechanisms remain unclear. Methods: The CD133+-Hep-2R cell line was established with repeated irradiation and magnetic-activated cell sorting. The effects of irradiation on CD133+-Hep-2R cells were examined by CCK-8 assay, Transwell assay, quantitative real-time polymerase chain reaction (RT-PCR), and Western blotting. The effects of GLUT-1 siRNA on the radiosensitivity of CD133+-Hep-2/2R cells were examined by RT-PCR, Western blotting, CCK-8 assay, colony formation assay, and Transwell assay in vitro and in a xenograft tumor model in nude mice. The cellular mechanism of enhanced radiosensitivity associated with GLUT-1 siRNA was investigated. The cell cycle and apoptosis rate were analyzed by flow cytometry, and the repair capability was examined by determining the levels of RAD51 and DNA-PKcs. Results: CD133+-Hep-2/2R cells showed stronger proliferation, lower apoptosis rate, lower percentage of G0/G1 phase cells, higher percentages of S and G2/M phase cells, and higher expression levels of GLUT-1 than Hep-2/2R cells. Transfection with GLUT-1 siRNA inhibited the proliferation and invasive capability of CD133+-Hep-2R cells by inhibiting GLUT-1 expression, which also caused a redistribution of the cell cycle (higher proportion of cells in the G0/G1 phase and lower proportion in the S and G2/M phases), increased the apoptosis rate, and reduced DNA repair capability by suppressing RAD51 and DNA-PKcs expression. Conclusion: The results of this study suggest that GLUT-1 siRNA can enhance the radiosensitivity of CD133+-Hep-2R cells by inducing a redistribution of cell cycle phases, inhibiting DNA repair capability, and increasing apoptosis. Inhibition of GLUT-1 may have therapeutic potential for interventions to increase the radiosensitivity of laryngeal CSCs.

20.
Ying Yong Sheng Tai Xue Bao ; 30(12): 4159-4168, 2019 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-31840461

RESUMO

Reasonable irrigation is still lacking for potato production in the sandy areas of Yulin, northern Shaanxi Province. To solve this problem, field drip fertigation was conducted to examine the growth, yield and quality of potato during the whole growing season. We further analyzed the responses of these indices to different irrigation frequencies and amounts. There were three irrigation frequencies (d), i.e. 4 (D1), 8 (D2) and 10 (D3), and three irrigation amounts, i.e. 60%ETc (W1), 80%ETc(W2) and 100%ETc(W3), where ETc was the crop water requirement, resulting in a total of nine treatments. Under the same irrigation frequency, plant height, leaf area index, dry matter, tuber yield and economic benefits of W3 were higher than those of W1 and W2. W1 had the highest irrigation water use efficiency (IWUE), while water use efficiency was not significantly affected by irrigation amount. The average tuber yield of W3 was 43442 kg·hm-2, which was 23.3% and 11.6% higher than that of W1 and W2, respectively. The net income of W3 was 23492 yuan·hm-2, which was 40.4% and 18.7% higher than that of W1 and W2, respectively. Tubers from W3 had the highest starch and vitamin C contents but the lowest reducing sugar content, which were 14.4%, 18.54 mg·(100 g)-1 FW and 0.7%, respectively. At the same irrigation amount, tuber yield, IWUE, starch and vitamin C contents of D1 were the highest, but the reducing sugar content was the lowest at the low and medium irrigation amounts. At the high irrigation amount, D2 had the highest tuber yield, IWUE, net income, starch and vitamin C contents but the lowest reducing sugar content, which were 46572 kg·hm-2, 23.04 kg·m-3, 26,622 yuan·hm-2,14.6%, 19.53 mg·(100 g)-1 FW and 0.7%, respectively. Based on the interacting effects of drip irrigation frequency and amount, both yield and quality of D2W3 reached the maximum. Results from the principal component analysis showed that D2W3 had the highest score. D2W3(8 d, 100%ETc) had the greatest yield and quality and relatively higher water use efficiency, which was thus considered as the optimal combination of drip irrigation frequency and amount. The results could provide a scientific basis for the drip irrigation scheduling design for high-yield, high-efficiency and high-quality potato production in the sandy areas of Yulin, northern Shaanxi.


Assuntos
Solo , Solanum tuberosum , Irrigação Agrícola , Biomassa , China , Areia , Triticum , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA