Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 548
Filtrar
1.
Clin Rheumatol ; 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35032222

RESUMO

OBJECTIVE: The apoptotic signaling pathway is obviously disordered in systemic lupus erythematosus (SLE). Natural IgM (nIgM) is important in clearing apoptotic cells and preventing them from triggering deleterious autoimmunity. B-1 and innate-like B (ILBs) cells are the main nIgM producers. Human CD27+IgD+ B cells (un-switched memory B cells) are considered ILBs. However, their functional properties in SLE remain undefined. METHODS: Peripheral blood sample of 50 SLE patients and 50 healthy controls were collected, and twelve SLE patients were assessed in a follow-up study. The amount of CD27+IgD+ B cell in each population was analyzed by flow cytometry. The IgM and IL-10 levels of CD27+IgD+ B cell were assessed by ELISPOT and qRT-PCR, respectively. SPSS 17.0 (SPSS, USA) was employed for data analysis. P < 0.05 indicated statistical significance. RESULT: The amounts of CD27+IgD+ B cell were significantly decreased in SLE patients than healthy control (P < 0.01). CD27+IgD+ B cell amounts were positively correlated with WBC (r = 0.337, P = 0.017), platelet count (r = 0.396, P = 0.004), and serum C3 levels (r = 0.415, P = 0.003) and negatively correlated with serum creatinine levels (r = - 0.285, P = 0.045), SLEDAI(r = - 0.724, P = 0.000), and anti-dsDNA(r = - 0.477, P = 0.000). The IgM and IL-10 levels of CD27+IgD+ B in active SLE were decreased than healthy control (P < 0.001). Moreover, CD27+IgD+ B cells are increased in SLE cases after treatment than before treatment (P < 0.001). CONCLUSION: The amounts of CD27+IgD+ B cell were significantly decreased in SLE patients compared with the healthy population, and CD27+IgD+ B cell was verified to be correlated with clinical and immunological features in SLE patients. CD27+IgD+ B cells had impaired function associated with IgM and IL-10 production in active SLE. Moreover, the amounts of CD27+IgD+ B cells were recovered to the normal level in SLE cases with treatment-related disease remission. Key Points • CD27+IgD+ B cell amounts are significantly decreased in SLE patients than healthy control. • CD27+IgD+ B cells are functionally impaired in producing natural antibody-like IgM and IL-10 in SLE patients. • CD27+IgD+ B cell amounts are correlated with clinical and immunological features in SLE.

2.
Bioact Mater ; 10: 145-158, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34901536

RESUMO

Growth plate cartilage has limited self-repair ability, leading to poor bone bridge formation post-injury and ultimately limb growth defects in children. The current corrective surgeries are highly invasive, and outcomes can be unpredictable. Following growth plate injury, the direct loss of extracellular matrix (ECM) coupled with further ECM depletion due to the inhibitory effects of inflammation on the cartilage matrix protein greatly hinder chondrocyte regeneration. We designed an exosome (Exo) derived from bone marrow mesenchymal stem cells (BMSCs) loaded ECM-mimic hydrogel to promote cartilage repair by directly supplementing ECM and anti-inflammatory properties. Aldehyde-functionalized chondroitin sulfate (OCS) was introduced into gelatin methacryloyl (GM) to form GMOCS hydrogel. Our results uncovered that GMOCS hydrogel could significantly promote the synthesis of ECM due to the doping of OCS. In addition, the GMOCS-Exos hydrogel could further promote the anabolism of chondrocytes by inhibiting inflammation and ultimately promote growth plate injury repair through ECM remodeling.

3.
Bioact Mater ; 7: 98-111, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34466720

RESUMO

Injectable biomaterial-based treatment is a promising strategy to enhance tissue repair after traumatic spinal cord injury (SCI) by bridging cavity spaces. However, there are limited reports of injectable, electroconductive hydrogels with self-healing properties being employed for the treatment of traumatic SCI. Hence, a natural extracellular matrix (ECM) biopolymer (chondroitin sulphate and gelatin)-based hydrogel containing polypyrrole, which imparted electroconductive properties, is developed for traumatic SCI repair. The resulting hydrogels showed mechanical (~928 Pa) and conductive properties (4.49 mS/cm) similar to natural spinal cord tissues. Moreover, the hydrogels exhibited shear-thinning and self-healing abilities, which allows it to be effectively injected into the injury site and to fill the lesion cavity to accelerate the tissue repair of traumatic SCI. In vitro, electroconductive ECM hydrogels promoted neuronal differentiation, enhanced axon outgrowth, and inhibited astrocyte differentiation. The electroconductive ECM hydrogel activated endogenous neural stem cell neurogenesis in vivo (n = 6), and induced myelinated axon regeneration into the lesion site via activation of the PI3K/AKT and MEK/ERK pathways, thereby achieving significant locomotor function restoration in rats with spinal cord injury (p < 0.001, compared to SCI group). Overall, the injectable self-healing electroconductive ECM-based hydrogels developed in this study are ideal biomaterials for treatment of traumatic SCI.

4.
J Colloid Interface Sci ; 610: 89-97, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34922085

RESUMO

Synergistic therapy has been emerging as new trend for effective tumor treatment due to synchronous function and cooperative reinforcement of multi therapeutic modalities. Herein, gold nanorods (GNRs) encapsulated into polypyrrole (PPy) shell with tunable void space (GNRs@Void@PPy) showing yolk@shell nanostructures were innovatively designed. The exploitation of dual near-infrared (NIR) absorptive species offered synergistic enhancement of photothermal performance. In addition, the manipulation of the void space between them provided additional benefits of high drug encapsulation efficiency (92.6%) and, interestingly, tumor microenvironment and NIR irradiation triggered targeted drug releasing. Moreover, the GNRs@Void@PPy exhibited excellent biocompatibility, and optimal curative effect by chemo-photothermal synergistic therapy was achieved through both in vitro and in vivo antitumor activity investigation.

5.
Inorg Chem ; 61(1): 633-642, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34915701

RESUMO

Carbon-based catalysts are found to be promising metal-free species for aerobic oxidative desulfurization of fuel oil. Thus, a proper approach to promote their catalytic performances is very much in demand. In this contribution, a heteroatom bridging strategy is proposed to enhance the catalytic activities of carbon-based catalysts. As proof of the strategy, a series of boron (B)-doped graphite catalysts were synthesized. Detailed characterizations showed that the hetero-B atoms were uniformly dispersed in graphite. More importantly, it was found that the doped B atoms functioned as a bridge for electron transfer. With the existence of the heteroatom bridge, the activation of oxygen by graphite during the catalytic oxidation process was enhanced remarkably, leading to an ultradeep oxidative desulfurization performance. Moreover, the catalyst can be readily recycled five times without a significant decrease in desulfurization performance.

6.
Glob Chang Biol ; 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34854168

RESUMO

Our limited understanding of the impacts of drought on tropical forests significantly impedes our ability in accurately predicting the impacts of climate change on this biome. Here, we investigated the impact of drought on the dynamics of forest canopies with different heights using time-series records of remotely sensed Ku-band vegetation optical depth (Ku-VOD), a proxy of top-canopy foliar mass and water content, and separated the signal of Ku-VOD changes into drought-induced reductions and subsequent non-drought gains. Both drought-induced reductions and non-drought increases in Ku-VOD varied significantly with canopy height. Taller tropical forests experienced greater relative Ku-VOD reductions during drought and larger non-drought increases than shorter forests, but the net effect of drought was more negative in the taller forests. Meta-analysis of in situ hydraulic traits supports the hypothesis that taller tropical forests are more vulnerable to drought stress due to smaller xylem-transport safety margins. Additionally, Ku-VOD of taller forests showed larger reductions due to increased atmospheric dryness, as assessed by vapor pressure deficit, and showed larger gains in response to enhanced water supply than shorter forests. Including the height-dependent variation of hydraulic transport in ecosystem models will improve the simulated response of tropical forests to drought.

7.
Sci Adv ; 7(49): eabl3752, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34851670

RESUMO

[Figure: see text].

8.
CNS Neurosci Ther ; 2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34894087

RESUMO

AIMS: Cerebral small vessel disease (CSVD) is characterized by functional and structural changes in small vessels. We aimed to elucidate the relationship between dynamic cerebral autoregulation (dCA) and neuroimaging characteristics of CSVD. METHODS: A case-control study was performed. Cerebral blood flow velocity (CBFV) of bilateral middle cerebral arteries and spontaneous arterial blood pressure were simultaneously recorded. Transfer function analysis was used to calculate dCA parameters (phase, gain, and the rate of recovery of CBFV [RoRc]). Neuroimaging characteristics of CSVD patients were evaluated, including lacunes, white matter hyperintensities (WMH), cerebral microbleeds (CMBs), perivascular spaces (PVS), and the total CSVD burden. RESULTS: Overall, 113 patients and 83 controls were enrolled. Compared with the control group, the phase at low frequency and the RoRc in CSVD patients were lower, and the gain at very low and low frequencies were higher, indicating bilaterally impaired dCA. Total CSVD burden, WMH (total, periventricular and deep), severe PVS, and lobar CMBs were independently correlated with the phase at low frequency. CONCLUSIONS: Our findings suggested that dCA was compromised in CSVD patients, and some specific neuroimaging characteristics (the total CSVD burden, WMH, severe PVS and lobar CMBs) might indicate more severe dCA impairment in CSVD patients.

9.
Artigo em Chinês | MEDLINE | ID: mdl-34937151

RESUMO

The concept of spread through air spaces (STAS) was first proposed in the World Health Organization (WHO) Classification of Tumors of the Lung, Pleura, Thymus and Heart (version 2015). STAS is defined as the micropapillary clusters, solid nests or single cells of tumor that exist in the air spaces of the surrounding lung parenchyma beyond the edge of the main tumor. Meanwhile, apart from the traditional invasion modes of lung adenocarcinoma (interstitial, visceral pleura and lym-phovascular invasion), STAS has been identified as the fourth invasion mode of lung adenocarcinoma. In recent years, the research on STAS has been a hot spot in the field of lung adenocarcinoma. The existence of STAS is related to lung cancer histopathology, gene mutation and other factors, and many studies have also confirmed that it can be used as an independent factor for tumor recurrence and prognosis. However, according to some studies, human factors can cause morphological artifacts of STAS, which still needs to be distinguished in clinical work. This paper reviews the research progress of STAS classification, related pathological features, genetic status changes, and human factors that may cause STAS artifacts.
.

10.
Micromachines (Basel) ; 12(12)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34945424

RESUMO

Cell-carrying magnet-driven microrobots are easily affected by blood flow or body fluids during transportation in the body, and thus cells often fall off from the microrobots. To reduce the loss of loaded cells, we developed a microrobot with a bioactive nanostructured titanate surface (NTS), which enhances cell adhesion. The microrobot was fabricated using 3D laser lithography and coated with nickel for magnetic actuation. Then, the microrobot was coated with titanium for the external generation of an NTS through reactions in NaOH solution. Enhanced cell adhesion may be attributed to the changes in the surface wettability of the microrobot and in the morphology of the loaded cells. An experiment was performed on a microfluidic chip for the simulation of blood flow environment, and result revealed that the cells adhered closely to the microrobot with NTS and were not obviously affected by flow. The cell viability and protein absorption test and alkaline phosphatase activity assay indicated that NTS can provide a regulatory means for improving cell proliferation and early osteogenic differentiation. This research provided a novel microrobotic platform that can positively influence the behaviour of cells loaded on microrobots through surface nanotopography, thereby opening up a new route for microrobot cell delivery.

11.
Front Physiol ; 12: 744855, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899378

RESUMO

Myocardial supply changes to accommodate the variation of myocardial demand across the heart wall to maintain normal cardiac function. A computational framework that couples the systemic circulation of a left ventricular (LV) finite element model and coronary perfusion in a closed loop is developed to investigate the transmural distribution of the myocardial demand (work density) and supply (perfusion) ratio. Calibrated and validated against measurements of LV mechanics and coronary perfusion, the model is applied to investigate changes in the transmural distribution of passive coronary perfusion, myocardial work density, and their ratio in response to changes in LV contractility, preload, afterload, wall thickness, and cavity volume. The model predicts the following: (1) Total passive coronary flow varies from a minimum value at the endocardium to a maximum value at the epicardium transmurally that is consistent with the transmural distribution of IMP; (2) Total passive coronary flow at different transmural locations is increased with an increase in either contractility, afterload, or preload of the LV, whereas is reduced with an increase in wall thickness or cavity volume; (3) Myocardial work density at different transmural locations is increased transmurally with an increase in either contractility, afterload, preload or cavity volume of the LV, but is reduced with an increase in wall thickness; (4) Myocardial work density-perfusion mismatch ratio at different transmural locations is increased with an increase in contractility, preload, wall thickness or cavity volume of the LV, and the ratio is higher at the endocardium than the epicardium. These results suggest that an increase in either contractility, preload, wall thickness, or cavity volume of the LV can increase the vulnerability of the subendocardial region to ischemia.

12.
Innovation (N Y) ; 2(4): 100154, 2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34901903

RESUMO

Relationships among productivity, leaf phenology, and seasonal variation in moisture and light availability are poorly understood for evergreen broadleaved tropical/subtropical forests, which contribute 25% of terrestrial productivity. On the one hand, as moisture availability declines, trees shed leaves to reduce transpiration and the risk of hydraulic failure. On the other hand, increases in light availability promote the replacement of senescent leaves to increase productivity. Here, we provide a comprehensive framework that relates the seasonality of climate, leaf abscission, and leaf productivity across the evergreen broadleaved tropical/subtropical forest biome. The seasonal correlation between rainfall and light availability varies from strongly negative to strongly positive across the tropics and maps onto the seasonal correlation between litterfall mass and productivity for 68 forests. Where rainfall and light covary positively, litterfall and productivity also covary positively and are always greater in the wetter sunnier season. Where rainfall and light covary negatively, litterfall and productivity are always greater in the drier and sunnier season if moisture supplies remain adequate; otherwise productivity is smaller in the drier sunnier season. This framework will improve the representation of tropical/subtropical forests in Earth system models and suggests how phenology and productivity will change as climate change alters the seasonality of cloud cover and rainfall across tropical/subtropical forests.

13.
Innovation (N Y) ; 2(4): 100163, 2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34901906

RESUMO

It has been long established that the terrestrial vegetation in spring has stronger photosynthetic capability than in autumn. However, this study challenges this consensus by comparing photosynthetic capability of terrestrial vegetation between the spring and autumn seasons based on measurements of 100 in situ eddy covariance towers over global extratropical ecosystems. At the majority of these sites, photosynthetic capability, indicated by light use efficiency (LUE) and apparent quantum efficiency, is significantly higher in autumn than in spring, due to lower atmosphere vapor pressure deficit (VPD) at the same air temperature. Seasonal VPD differences also substantially explain the interannual variability of the differences in photosynthetic capability between spring and autumn. We further reveal that VPD in autumn is significantly lower than in spring over 74.14% of extratropical areas, based on a global climate dataset. In contrast, LUE derived from a data-driven vegetation production dataset is significantly higher in autumn in over 61.02% of extratropical vegetated areas. Six Earth system models consistently projected continuous larger VPD values in spring compared with autumn, which implies that the impacts on vegetation growth will long exist and should be adequately considered when assessing the seasonal responses of terrestrial ecosystems to future climate conditions.

14.
J Biomech Eng ; 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34897372

RESUMO

Two-dimensional mesoscale finite element analysis (FEA) of a multi-layered brain tissue was performed to calculate the damage related average stress triaxiality and local maximum von Mises strain in the brain. The FEA was integrated with rate dependent hyperelastic and internal state variable (ISV) models respectively describing the behaviors of wet and dry brain tissues. Using the finite element results, a statistical method of design of experiments (DOE) was utilized to independently screen the relative influences of seven parameters related to brain morphology (sulcal width/depth, gray matter (GM) thickness, cerebrospinal fluid (CSF) thickness and brain lobe) and loading/environment conditions (strain rate and humidity) with respect to the potential damage growth/coalescence in the brain tissue. The results of the parametric study illustrated that the GM thickness and humidity were the two most crucial parameters affecting average stress triaxiality. For the local maximum von Mises strain at the depth of brain sulci, the brain lobe/region was the most influential factor. The conclusion of this investigation gives insight for the future development and refinement of a macroscale brain damage model incorporating information from lower length scale.

15.
Front Cardiovasc Med ; 8: 720597, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34966791

RESUMO

Objectives: A novel AFR- albumin-derived neutrophil to lymphocyte ratio (dNLR) score (ADS) were reported to associate with clinical outcome in various malignancies, However, the relation between the ADS score and outcomes in coronary artery disease (CAD) patients after percutaneous coronary intervention (PCI) has not been investigated. Methods: Three thousand five hundred and sixty-one patients were divided into two groups according to ADS score: low group (ADS score <2; n = 2,682) and high group (ADS score ≥ 2; n = 879). Overall, there were 133 all-cause mortality (ACM) during the following up. The incidence of ACM in the low group is 2.7% (72/2,682) and high group is 6.9% (61/879). The ACM incidence was significantly higher in high group compared to that in the low group (P < 0.001). Cardiac mortality (CM) occurred in 82 patients: 44(1.6%) in the low group and 38 (4.3%) in the high group. There was significant difference in the CM incidence between the low group and high group (P < 0.001). Major adverse cardiac and cerebrovascular events (MACCE) occurred in 520 patients: 366 (13.6%) in the low group and 154 (17.5%) in the high group. There was significant difference in the MACCE incidence between the low group and high group (P = 0.005). Major adverse cardiac and events (MACE) occurred in 395 patients: 281(10.5%) in the low group and 114 (13.0%) in the high group. There was significant difference in the MACE incidence between the low group and high group (P = 0.041). The multivariate Cox proportional hazards model showed that ADS score was independently correlated with the ACM [adjusted HR = 2.031 (1.357-3.039), P = 0.001]; CM [adjusted HR = 1.883 (1.127-3.147), P = 0.016]; MACCE [adjusted HR = 1.352 (1.096-1.668), P = 0.005], and MACE [adjusted HR = 1.260 (0.987-1.608), P = 0.063]. Conclusion: The present study indicated that the ADS score was associated with long-term mortality, the MACCE, and the MACE in CAD patients underwent PCI.

16.
Comput Biol Med ; : 105050, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34823858

RESUMO

Cardiac resynchronization therapy (CRT) is an established treatment for left bundle branch block (LBBB) resulting in mechanical dyssynchrony. Approximately 1/3 of patients with CRT, however, are non-responders. To understand factors affecting CRT response, an electromechanics-perfusion computational model based on animal-specific left ventricular (LV) geometry and coronary vascular networks located in the septum and LV free wall is developed. The model considers contractility-flow and preload-activation time relationships, and is calibrated to simultaneously match the experimental measurements in terms of the LV pressure, volume waveforms and total coronary flow in the left anterior descending and left circumflex territories from 2 swine models under right atrium and right ventricular pacing. The model is then applied to investigate the responses of CRT indexed by peak LV pressure and (dP/dt)max at multiple pacing sites with different degrees of perfusion in the LV free wall. Without the presence of ischemia, the model predicts that basal-lateral endocardial region is the optimal pacing site that can best improve (dP/dt)max by 20%, and is associated with the shortest activation time. In the presence of ischemia, a non-ischemic region becomes the optimal pacing site when coronary flow in the ischemic region fell below 30% of its original value. Pacing at the ischemic region produces little response at that perfusion level. The optimal pacing site is associated with one that optimizes the LV activation time. These findings suggest that CRT response is affected by both pacing site and coronary perfusion, which may have clinical implication in improving CRT responder rates.

17.
Inorg Chem ; 60(22): 16906-16910, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34726390

RESUMO

Herein, a new organic-inorganic hybrid cuprous iodide of [(Me)2-DABCO]Cu6I8 was prepared and structurally characterized with a novel three-dimensional (3D) [Cu6I8]2- framework. Significantly, this 3D cuprous iodide displays infrequent broadband red-to-near-infrared light emission (600-1000 nm) stemming from the radiative recombination of self-trapped excitons.

18.
Front Med ; 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34727319

RESUMO

Anti-CD19 chimeric antigen receptor (CAR) T cell therapy has shown impressive efficacy in treating B-cell malignancies. A single-center phase I dose-escalation study was conducted to evaluate the safety and efficacy of T cells transduced with CBM.CD19 CAR, a second-generation anti-CD19 CAR bearing 4-1BB costimulatory molecule, for the treatment of patients with refractory diffuse large B-cell lymphoma (DLBCL). Ten heavily treated patients with refractory DLBCL were given CBM.CD19 CAR-T cell (C-CAR011) treatment. The overall response rate was 20% and 50% at 4 and 12 weeks after the infusion of C-CAR011, respectively, and the disease control rate was 60% at 12 weeks after infusion. Treatment-emergent adverse events occurred in all patients. The incidence of cytokine release syndrome in all grades and grade ⩾ 3 was 90% and 0, respectively, which is consistent with the safety profile of axicabtagene ciloleucel and tisagenlecleucel. Neurotoxicity or other dose-limiting toxicities was not observed in any dose cohort of C-CAR011 therapy. Antitumor efficacy was apparent across dose cohorts. Therefore, C-CAR011 is a safe and effective therapeutic option for Chinese patients with refractory DLBCL, and further large-scale clinical trials are warranted.

19.
Biomicrofluidics ; 15(5): 054103, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34737839

RESUMO

Single-cell level coculture facilitates the study of cellular interactions for uncovering unknown physiological mechanisms, which are crucial for the development of new therapies for diseases. However, efficient approaches for high-throughput deterministic pairing of single cells and traceable coculture remain lacking. In this study, we report a new microfluidic device, which combines hydrodynamic and recirculation flow captures, to achieve high-throughput and deterministic pairing of single cells in a microwell array for traceable coculture. Compared with the existing techniques, the developed device exhibits advantages with regard to pairing efficiency, throughput, determinacy, and traceability. Through repeating a two-step method, which sequentially captures single cells in a meandering channel and a microwell array, cell number and type can be easily controlled. Double and triple single-cell pairings have been demonstrated with an efficiency of 72.2% and 38.0%, respectively. Cellular engulfment using two breast cell lines is investigated on a developed microfluidic chip as a biological case study, in which the morphological characteristics and the incidence rate are analyzed. This research provides an efficient and reliable alternative for the coculture of single cells on the microfluidic platform for various biomedical applications, such as studying cellular engulfment and tumor sphere formation under single-cell pairing condition.

20.
J Reprod Dev ; 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34615838

RESUMO

Immune imbalance of Treg/Th17 cells may contribute to recurrent implantation failure (RIF) during in vitro fertilization and embryo transfer (IVF-ET). In this study, we sought to determine the effect of intrauterine administration of mouse PBMCs prior to embryo implantation on endometrial receptivity and embryo implantation, and examine the underlying mechanism of Treg/Th17 cell balance following intrauterine administration of PBMCs. Pregnant mice were randomly divided into three groups: control group, embryo implantation dysfunction (EID) group, and EID with PBMCs group, and the number of embryo implantation sites was recorded during early pregnancy (Pd7.5). The balance of Treg/Th17 cells in the peripheral blood, spleen, and local implantation sites was detected during the peri-implantation period (Pd4.0) and early pregnancy (Pd7.5). The EID group demonstrated a significant decrease in the number of embryo implantation sites, while the EID with PBMCs group demonstrated higher number of embryo implantation sites compared to the EID group. The balance of Treg/Th17 cells in the peripheral blood and spleen tissues was not significantly different between the aforementioned groups. However, the local uterine ratio of the Treg/Th17 cells increased in the EID with PBMCs group compared to that in the EID group. Collectively, we found that intrauterine administration of PBMCs prior to embryo implantation effectively promotes embryo implantation rates. This may be attributed to the improvement in the local immune balance of Treg and Th17 cells compared with the overall immune balance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...