Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 197: 113734, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34736113

RESUMO

The performance of photoelectrochemical (PEC) analysis system relies closely on the properties of the photoelectric electrodes. It is of great significance to integrate photoactive materials with flexible substrates to construct ultra-sensitive PEC sensors for practical application. This work reports a novel photoelectrode developed by immobilizing α-Fe2O3 nanoparticles (NPs)/defect-rich carbon nitride (d-C3N4), an excellent Z-scheme heterojunction photoelectric material, onto three-dimensional (3D) flexible carbon fiber textile. Specifically, 3D hierarchical structure of flexible carbon fiber textile provides larger specific surface area and higher mechanical strength than traditional electrodes, resulting in more reaction sites and faster reaction kinetics to achieve signal amplification. Simultaneously, α-Fe2O3/d-C3N4 Z-scheme heterojunction exhibits enhanced light absorption capability and high redox ability, thus dramatically improving the PEC performance. This photoelectrode was used to construct a flexible PEC aptasensor for ultrasensitive detection of penbritin, demonstrating excellent performance in terms of wide linear range (0.5 pM-50 nM), low detection limit (0.0125 pM) and high stability. The design principle is applicable to the manufacture of other photoelectric sensing systems, which provides an avenue for the development of portable environmental analysis and field diagnostics equipment.

2.
J Dairy Sci ; 104(12): 12980-12993, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34593221

RESUMO

Liver X receptor α (LXRα; NR1H3) is an important transcription factor that can facilitate milk fat synthesis by regulating the transcription of FASN in mice and goats. Nevertheless, the lipid synthesis related to LXRα and its regulation on FASN in the buffalo mammary gland remain elusive. Here, we demonstrated that the mRNA and protein expression of LXRα in buffalo mammary tissue increased in lactation compared with that in the dry-off period. Overexpression of NR1H3 enhanced the lipid droplet formation and triacylglycerol concentration in buffalo mammary epithelial cells (BuMEC), whereas the knockdown of NR1H3 resulted in a decrease in the number of lipid droplets. At the same time, NR1H3 also affected the expression of regulatory factors (INSIG1, INSIG2, SREBF1, and PPARG) related to milk fat synthesis and that of genes involved in de novo synthesis (FASN, ACACA, and SCD), and uptake and transport (LPL, CD36, and FABP3) of fatty acids as well as triacylglycerol synthesis (GPAM, APGAT6, and DGAT1). Luciferase reporter assays indicated that overexpression of NR1H3 resulted in an increase in the activity of FASN promoter, whereas the knockdown of NR1H3 had an opposite effect. When NR1H3 was overexpressed, mutations in LXRE or SRE could decrease the promoter activity of FASN. Furthermore, mutagenesis of both LXRE and SRE within the FASN promoter completely eliminated the induced activity of LXRα. Our results reveal that buffalo LXRα promotes milk fat synthesis through regulating the expression of FASN by directly interacting with FASN promoter and affecting the SREBF1 expression. This study underscores a crucial role of LXRα in regulating lipid synthesis of the buffalo mammary gland.


Assuntos
Glândulas Mamárias Animais , Leite , Animais , Células Epiteliais , Ácidos Graxos/metabolismo , Feminino , Cabras , Lactação , Lipogênese/genética , Receptores X do Fígado/genética , Receptores X do Fígado/metabolismo , Glândulas Mamárias Animais/metabolismo , Camundongos
3.
Nat Chem ; 13(11): 1093-1100, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635816

RESUMO

Chiral Brønsted acid-catalysed asymmetric synthesis has received tremendous interest over the past decades, and numerous efficient synthetic methods have been developed based on this approach. However, the use of chiral Brønsted acids in these reactions is mostly limited to the activation of imine and carbonyl moieties, and the direct activation of carbon-carbon triple bonds has so far not been invoked. Here we show that chiral Brønsted acids enable the catalytic asymmetric dearomatization reactions of naphthol-, phenol- and pyrrole-ynamides by the direct activation of alkynes. This method leads to the practical and atom-economic construction of various valuable spirocyclic enones and 2H-pyrroles that bear a chiral quaternary carbon stereocentre in generally good-to-excellent yields with excellent chemo-, regio- and enantioselectivities. The activation mode of chiral Brønsted acid catalysis revealed in this study is expected to be of broad utility in catalytic asymmetric reactions that involve ynamides and the related heteroatom-substituted alkynes.

4.
Artigo em Inglês | MEDLINE | ID: mdl-33742447

RESUMO

Recent studies have shown elongase of very-long-chain fatty acids 6 (ELOVL6) is a vital protein for endogenous synthesis of saturated and monounsaturated long-chain fatty acids in some mammals. Nevertheless, its role in lipid synthesis in buffalo mammary gland is still unclear. In this work, the full-length coding sequence (CDS) of ELOVL6 was cloned and identified from buffalo mammary gland. As a result, the CDS of this gene is 795 bp, which encodes a polypeptide of 264 amino acid residues. The buffalo ELOVL6 contains an ELO domain which belongs to the ELO superfamily. Among the 10 tissues of buffalo in peak lactation detected by RT-qPCR, the expression level of ELOVL6 was the highest in the brain, followed by the spleen, and then decreased in the mammary gland, muscle, kidney, heart, liver, rumen, intestine and lung. However, only the expression in the brain and spleen was statistically different from that in other tissues (p < 0.05). Compared with that of the dry-off period, the mRNA abundance of ELOVL6 in the mammary gland was significantly increased in peak lactation. The experiments based on lentivirus transfection in buffalo mammary epithelial cells (BuMECs) displayed that the overexpression of ELOVL6 markedly promoted the expression of INSIG1, INSIG2, SREBP, PPARG, FASN, GPAM, DGAT2 and APGAT6 genes, and the knockdown of ELOVL6 significantly decreased the mRNA abundance of INSIG2, SREBP, FASN, SCD, GPAM, APGAT6 and TIP47 genes. In addition, the increase or decrease of ELOVL6 expression level also caused the corresponding change of total triglyceride content in the BuMECs. The results here suggest that the ELOVL6 can catalyse the synthesis of long-chain fatty acids in the BuMECs, and it can indirectly affect the expression of genes related to milk fat synthesis through its catalytic products to promote the lipid biosynthesis of BuMECs.

5.
J Dairy Res ; 87(3): 349-355, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32907640

RESUMO

We hypothesized that insulin-induced gene 1 (INSIG1) affects milk fat synthesis in buffalo. For this reason, the protein abundance of INSIG1 in the mammary tissue of buffalo during the peak period of lactation and dry-off period was evaluated. The results showed that the expression of INSIG1 at the peak of lactation was lower than that in the dry-off period. To explore the role of INSIG1 in milk fat synthesis, the buffalo mammary epithelial cells (BMECs) were isolated and purified from buffalo mammary tissue, and INSIG1 gene were overexpressed and knocked down by constructing the recombinant lentivirus vector of INSIG1 gene and transfecting into BMECs. Results revealed that INSIG1 overexpression decreased the expression of INSIG2, SREBP, PPARG, SCD, GPAM, DGAT2 and AGPAT6, which led to reduction of triglycerides (TAG) content in the cell. In contrast, knockdown of INSIG1 had a positive effect on mRNA expression of the above genes. Overall, the data provide strong support for a key role of INSIG1 in the regulation of milk fat synthesis in BMECs.


Assuntos
Búfalos , Células Epiteliais/efeitos dos fármacos , Gorduras/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Glândulas Mamárias Animais/citologia , Leite/química , Animais , Células Cultivadas , Células Epiteliais/metabolismo , Feminino , Regulação da Expressão Gênica , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Interferência de RNA
6.
Arch Anim Breed ; 63(2): 249-259, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32775610

RESUMO

PPARGC1A exerts important functions in activating many nuclear receptors and transcription factors that are related to energy balance. Previous studies have shown that PPARGC1A gene is associated with lactation traits of dairy cattle. However, the functional role of the buffalo PPARGC1A gene is still unknown. In this work, the complete coding sequence (CDS) of buffalo PPARGC1A was isolated and characterized for swamp and river buffalo. The CDS length of PPARGC1A for both types of buffalo was the same, which was composed of 2394 nucleotides and encoded a peptide composed of 797 amino acid residues. This protein belonged to a hydrophilic protein and contained one RRM_PPARGC1A domain (AA 674-764) without a signal peptide or a transmembrane domain. The differential expressions of this gene in 10 buffalo tissues in lactation and non-lactation displayed that the PPARGC1A was highly expressed in the muscle, heart, liver, brain and kidney of both non-lactating and lactating periods, but its expression was significantly different in the muscle, heart, liver, small intestine, mammary gland, rumen, spleen and lung between the two periods. Eight single nucleotide polymorphisms (SNPs) were found in buffalo, in which the c.778C > T, c.1257G > A and c.1311G > A were shared by two types of buffalo with similar allele frequencies, while the c.419C > T, c.759A > G, c.920C > A, c.926G > A and c.1509A > T were only observed in river buffalo. The SNP419, SNP920 and SNP926 were non-synonymous, which led to the amino acid changes of p.Ser140Phe, p.Pro307His and p.Arg309Lys. Seven nucleotide differential sites were identified in the PPARGC1A gene between buffalo and other Bovidae species. Phylogenetic analysis indicated that buffaloes were independently clustered into one branch, but they were closely related to the species of the Bos genus. The results indicate that buffalo PPARGC1A is an inducible transcriptional coactivator involved in regulating carbohydrate and fat metabolism. It can exert a functional role in a variety of buffalo tissues and may participate in milk fat synthesis and development in the mammary gland.

7.
ACS Nano ; 14(4): 4336-4351, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32275394

RESUMO

The abundant species of functional nanomaterials have attracted tremendous interests as components to construct multifunctional composites for cancer theranostics. However, their distinct chemical properties substantially require a specific strategy to integrate them in harmony. Here, we report the preparation of a distinctive multifunctional composite by encapsulating small-sized semiconducting copper bismuth sulfide (CBS) nanoparticles and rare-earth down-conversion (DC) nanoparticles in larger-sized zeolitic imidazolate framework-8 (ZIF8) nanoparticles, followed by loading an anticancer drug, doxorubicin (DOX). Such composites can be used for tetramodal imaging, including traditional computed tomography and magnetic resonance imaging and, recently, for photoacoustic imaging and fluorescence imaging. With a pH-responsive release of the encapsulated components, synergistic radio-chemotherapy with a high (87.6%) tumor inhibition efficiency is achieved at moderate doses of the CBS&DC-ZIF8@DOX composite with X-ray irradiation. This promising strategy highlights the extending capacity of zeolitic imidazolate frameworks to encapsulate multiple distinct components for enhanced cancer imaging and therapy.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Zeolitas , Antineoplásicos/uso terapêutico , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico
8.
Arch Anim Breed ; 63(2): 345-354, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34084897

RESUMO

The α S 2 -casein ( α S 2 -CN) is a member of the casein family associated with milk traits in ruminants, but so far the buffalo CSN1S2 gene has not been well understood. In this work, the polymorphisms of CSN1S2 in river and swamp buffalo were detected using direct sequencing of polymerase chain reaction (PCR) products. As a result, 13 single nucleotide polymorphisms (SNPs) were identified in the coding sequence (CDS) of CSN1S2 in two types of buffalo, of which eight SNPs were non-synonymous. The amino acid changes caused by c.580T > C and c.642C > G may affect the function of buffalo α S 2 -CN. A total of 11 CSN1S2 CDS haplotypes were defined, and accordingly 11 variants of buffalo α S 2 -CN were inferred and named. The CSN1S2 CDSs of both types of buffalo were 669 nucleotides, which encoded a precursor of 222 amino acids (AAs), and the first 15 AAs constitute a signal peptide. The composition and physicochemical characteristics of two types of buffalo α S 2 -CNs were similar but slightly different from those of cattle α S 2 -CN. The α S 2 -CN mature peptides of buffalo and the species of Bos genus contained a casein domain, and their secondary structures were highly consistent, indicating that they are functionally similar. The results here provide initial insights into the variation, characteristics and biological function of buffalo CSN1S2.

9.
Arch Anim Breed ; 62(2): 585-596, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31893216

RESUMO

Kappa casein plays a crucial role in the formation of stable casein micelles and has a key influence on milk-clotting properties. However, current understanding of buffalo CSN3 gene polymorphisms is not sufficient. In this study, the polymorphisms in the complete coding sequence (CDS) of the buffalo CSN3 were detected using PCR product direct sequencing. The CDS of CSN3 for river and swamp buffalo was the same in length, which contained an open reading frame of 573 nucleotides encoding a peptide containing 190 amino acid residues. A total of eight single nucleotide polymorphisms (SNPs) was identified in two types of buffalo. Among them, c.86C>T, c.252G>C, c.445G>A, c.467C>T and c.516A>C were non-synonymous, which leads to p.Pro8Leu, p.Lys63Asn, p.Val128Ile, p.Thr135Ile and p.Glu151Asp substitutions in buffalo kappa casein ( κ -CN), respectively. The substitution of p.Thr135Ile may exert a vital effect on the function of buffalo κ -CN. Eleven haplotypes were defined based on the SNPs found in buffalo, and accordingly, seven protein variants and four synonymous variants of buffalo κ -CN were inferred, called variants A, B, B 1 , C, C 1 , C 2 , D, E, F, F 1 and G. The variants observed in water buffalo did not exist in the Bos genus. In addition, 14 amino acid differential sites of κ -CN between buffalo and the Bos genus were identified, of which 3 were located at glycosylation sites (80S, 96T, 141S) and 4 at phosphorylation sites (19S, 80S, 96T, 141S). It is speculated that they may lead to differences in the physicochemical properties of κ -CN between buffalo and the Bos genus. This study will lay a foundation for exploring the association between the variation in the CSN3 gene and the lactation traits of buffalo.

10.
Org Lett ; 20(24): 7748-7752, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30495967

RESUMO

A porous organic polymer (POL-Xantphos) was synthesized and employed as a heterogeneous ligand for selective hydrosilylation of alkynes. It exhibits high selectivity and catalytic efficiency toward a broad range of alkynes. Owing to the confinement effect of the micropore structure, POL-Xantphos was far superior to the monomeric Xantphos ligands in controlling the selectivity. By performing hydrosilylation in a flow reactor system, separation and regeneration of the Ni/POL-Xantphos catalyst are easily achieved without any loss in selectivity or activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...