Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 26(16)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34443601

RESUMO

Surfactant aggregates have long been considered as a tool to improve drug delivery and have been widely used in medical products. The pH-responsive aggregation behavior in anionic gemini surfactant 1,3-bis(N-dodecyl-N-propanesulfonate sodium)-propane (C12C3C12(SO3)2) and its mixture with a cationic monomeric surfactant cetyltrimethylammonium bromide (CTAB) have been investigated. The spherical-to-wormlike micelle transition was successfully realized in C12C3C12(SO3)2 through decreasing the pH, while the rheological properties were perfectly enhanced for the formation of wormlike micelles. Especially at 140 mM and pH 6.7, the mixture showed high viscoelasticity, and the maximum of the zero-shear viscosity reached 1530 Pa·s. Acting as a sulfobetaine zwitterionic gemini surfactant, the electrostatic attraction, the hydrogen bond and the short spacer of C12C3C12(SO3)2 molecules were all responsible for the significant micellar growth. Upon adding CTAB, the similar transition could also be realized at a low pH, and the further transformation to branched micelles occurred by adjusting the total concentration. Although the mixtures did not approach the viscosity maximum appearing in the C12C3C12(SO3)2 solution, CTAB addition is more favorable for viscosity enhancement in the wormlike-micelle region. The weakened charges of the headgroups in a catanionic mixed system minimizes the micellar spontaneous curvature and enhances the intermolecular hydrogen-bonding interaction between C12C3C12(SO3)2, facilitating the formation of a viscous solution, which would greatly induce entanglement and even the fusion of wormlike micelles, thus resulting in branched microstructures and a decline of viscosity.


Assuntos
Reologia , Tensoativos/química , Cetrimônio/química , Glutamatos/química , Concentração de Íons de Hidrogênio , Micelas , Viscosidade
2.
Langmuir ; 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33956450

RESUMO

A versatile method to remove a broad spectrum of dye pollutants from wastewater rapidly and efficiently is highly desirable. Here, we report that the complex coacervation of cationic trimeric imine-based surfactants (TISn) with negatively charged hydrolyzed polyacrylamide (HPAM) can be used for this purpose. The coacervation occurs in a wide concentration and composition range and requires the HPAM and TISn concentrations as low as 0.1 g/L and 0.1 mM, respectively. Dye effluents treated by trimeric surfactants and HPAM complete phase separation within 30 s under turbulent conditions, which generates an exceedingly small volume fraction (0.4%) of viscoelastic coacervate and a clear supernatant with a dye removal efficiency of up to 99.9% for anionic and neutral dyes in dosages of up to 120 mg/L. Crowded molecular arrangement and thick framework in coacervate are responsible for the rapid phase separation rate and low volume fraction. The trimeric imine surfactant/polymer coacervation provides a simple, effective, and sustainable approach for the rapid removal of dyes and other organic pollutants.

3.
Biomacromolecules ; 21(10): 4345-4354, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-32931261

RESUMO

Osteoarthritic joints contain lower-molecular-weight (MW) hyaluronan (hyaluronic acid, HA) than healthy joints. To understand the relevance of this HA size effect for joint lubrication, the friction and surface structure of cartilage-emulating surfaces with HA of different MWs were studied using a surface force balance (SFB) and atomic force microscopy (AFM). Gelatin (gel)-covered mica surfaces were coated with high-MW HA (HHA), medium-MW HA (MHA), or low-MW HA (LHA), and lipids of hydrogenated soy l-α-phosphatidylcholine (HSPC) in the form of small unilamellar vesicles, using a layer-by-layer assembly method. SFB results indicate that the gel-HHA-HSPC boundary layer provides very efficient lubrication, attributed to hydration lubrication at the phosphocholine headgroups exposed by the HA-attached lipids, with friction coefficients (COF) as low as 10-3-10-4 at contact stresses at least up to P = 120 atm. However, for the gel-MHA-HSPC and gel-LHA-HSPC surfaces, the friction, initially low, increases sharply at much lower pressures (up to 30-60 atm at most). This higher friction with the shorter chains may be due to their weaker total adhesion energy to the gelatin, where the attraction between the negatively charged HA and the weakly positively charged gelatin is attributed largely to counterion-release entropy. Thus, the complexes of LHA and MHA with the lubricating HSPC lipids are more easily removed by shear during sliding, especially at high stresses, than the HHA-HSPC complex, which is strongly adhered to gelatin. This is ultimately the reason for lower-pressure lubrication breakdown with the shorter polysaccharides. Our results provide molecular-level insight into why the decrease in HA molecular weight in osteoarthritic joints may be associated with higher friction at the articular cartilage surface, and may have relevance for treatments of osteoarthritis involving intra-articular HA injections.


Assuntos
Cartilagem Articular , Ácido Hialurônico , Fricção , Lubrificação , Peso Molecular , Líquido Sinovial
4.
Langmuir ; 36(30): 8733-8744, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32631060

RESUMO

This work has investigated the interaction of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) vesicles with oligomeric surfactants noncovalently formed by sodium dodecyl sulfate (SDS) and a series of polyamines, 1,3-diaminopropane (PDA), triamine, spermidine, and spermine. The partition coefficients (P) of these surfactants between lipid bilayers and the aqueous phase are measured by isothermal titration microcalorimetry (ITC), showing that the P value increases and the Gibbs free energy of the partition becomes more negative with increasing oligomerization degree of the surfactants. This changing trend is similar to that of synthetic oligomeric surfactants regardless of the charge properties, suggesting that the polyamine and SDS molecules interact with the DOPC bilayer simultaneously. Meanwhile, the DOPC solubilization by these surfactants is evaluated by the effective surfactant-to-lipid molar ratios for the onset (Resat) and end (Resol) of the solubilization process, which are determined from the phase boundaries obtained by ITC, turbidity, and dynamic light scattering measurements. With the increment of oligomerization degree, the Resat and Resol values increase anomalously and are much larger than those of the synthetic surfactants with the same oligomerization degree, suggesting that noncovalently constructed oligomeric surfactants exhibit lower solubilization ability to phospholipid vesicles than the corresponding covalent oligomeric surfactants. Therefore, the noncovalently constructed oligomeric-like surfactants facilitate strong partition but weak solubilization to phospholipid vesicles, which may provide a useful strategy to mildly adjust the permeation and fluidity of phospholipid vesicles with solubilization delay.

5.
Adv Mater ; 31(41): e1904475, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31465133

RESUMO

Inkjet printing of water-based inks on superhydrophobic surfaces is important in high-resolution bioarray detection, chemical analysis, and high-performance electronic circuits and devices. Obtaining uniform spreading of a drop on a superhydrophobic surface is still a challenge. Uniform round drop spreading and high-resolution inkjet printing patterns are demonstrated on superhydrophobic surfaces without splash or rebound after high-speed impacting by introducing live-oligomeric surfactant adhesion. During impact, the live-oligomeric surfactant molecules aggregate into dynamic, wormlike micelle networks, which jam at the solid-liquid interface by entangling with the surface micro/nanostructures to pin the contact line and jam at the spreading periphery to keep the uniform spreading lamellar shape. This efficient uniform spreading of high-speed impact drops opens a promising avenue to control drop impact dynamics and achieve high-resolution printing.

6.
Langmuir ; 35(6): 2334-2342, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30636427

RESUMO

Direct exposure or intake of engineered nanoparticles (ENPs) to the human body will trigger a series of complicated biological consequences. Especially, ENPs could either up- or downregulate peptide fibrillation, which is associated with various degenerative diseases like Alzheimer's and Parkinson's diseases. This work reports the effects of gold nanoparticles (AuNPs) with different shapes on the aggregation of an amyloid-ß peptide (Aß(1-40)) involved in Alzheimer's disease. Two kinds of AuNPs were investigated, i.e., gold nanospheres (AuNSs, ∼20 nm in diameter) and gold nanocubes (AuNCs, ∼20 nm in edge length). It was found that AuNPs play a catalytic role in peptide nucleation through interfacial adsorption of Aß(1-40). AuNSs with hybrid facets have higher affinity to Aß(1-40) because of the higher degree of surface atomic unsaturation than the {100}-faceted AuNCs. Therefore, AuNSs exert a more significant acceleration effect on the fibrillation process of Aß(1-40) than AuNCs. Besides, a shape-dependent secondary structure transformation of Aß(1-40) with different AuNPs was observed using Fourier transform infrared spectroscopy. The variation of peptide-NP and peptide-peptide interactions caused by the shape alteration of AuNPs influences the equilibrium of inter- and intramolecular hydrogen bonds, which is believed to be responsible for the shape-dependent secondary structure transformation. The study offers further understanding on the complicated NP-mediated Aß aggregation and also facilitates further development on designing and synthesizing task-specific AuNPs for amyloid disease diagnosis and therapy.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Nanopartículas Metálicas/química , Fragmentos de Peptídeos/metabolismo , Adsorção , Peptídeos beta-Amiloides/química , Ouro/química , Fragmentos de Peptídeos/química , Conformação Proteica em alfa-Hélice/efeitos dos fármacos , Conformação Proteica em Folha beta/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos
7.
Soft Matter ; 14(48): 9830-9837, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30484809

RESUMO

Traditional metal ion separation by surfactant foams is dependent on the interaction difference of various metal ions with surfactant monomers rather than surfactant aggregates, because the binding of metal ions with surfactant aggregates retains the metal ions in bulk solution. This kind of separation method is only effective for the metal ions with obvious differences in valence, size or coordination ability. The present study proposes a novel separation method based on the binding affinity difference of metal ions with micelles and monomers of two surfactants to selectively separate multivalent ions Cr3+, Ni2+ and Cu2+ from their dilute mixed aqueous solution. The two surfactants are single-chain surfactant sodium dodecyl sulfate (SDS) and gemini surfactant 1,3-bis(N-dodecyl-N-propanesulfonate sodium)-propane (C12C3C12(SO3)2), which show negligible synergism because they are both negatively charged and hold a significantly different self-assembling ability, thus allowing the coexistence of SDS/C12C3C12(SO3)2 micelles with SDS monomers. At first, Cr3+ ions were separated from Cu2+ and Ni2+ ions by the foam generated by the SDS monomers due to more intensive electrostatic interaction of Cr3+ ions with the SDS monomers. Afterwards Ni2+ ions were separated from Cu2+ ions by utilizing the high binding affinity of Cu2+ with the SDS/C12C3C12(SO3)2 micelles in the bulk solution and Ni2+ with the SDS monomers in the foam. This work has proved that micelles can assist the selective separation of "twin-like" metal ions Ni2+ and Cu2+ when the concentrations of monomers and micelles are properly adjusted.

8.
Langmuir ; 34(43): 12924-12933, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30339015

RESUMO

Chiral cationic gemini surfactants 1,4-bis(dodecyl- N, N-dimethylammonium bromide)-2,3-butanediol (12-4(OH)2-12) including racemate, mesomer, and two enantiomers were synthesized and their self-assembly in aqueous solution has been comparatively investigated by tensiometry, conductometry, 1H NMR, small-angle neutron scattering, cryogenic transmission electron microscopy, and cryogenic scanning electron microscopy. The chirality at spacer induces different self-assembly behaviors due to the hydrogen-bonding interaction between the hydroxyl groups at the chiral centers. The stereochemistry of the spacer has little effect on the release of the counterions from the surfactant headgroups and on the molecular packing at the air-water interface. The critical micelle concentration (CMC) decreases in the order of racemate > enantiomer > mesomer. Above the CMC, the aggregates of enantiomers transit from small spherical micelles to rodlike and wormlike micelles with increasing concentration, whereas the mesomer and racemate aggregates transform from spherical micelles to rodlike micelles and platelet-like aggregates. The differences may be because the mesomer and racemate molecules mainly form intermolecular hydrogen bonds between the -OH groups, but the enantiomer molecules dominantly form intramolecular hydrogen bonds. Furthermore, it was found that the chiral micelles formed by the enantiomers exhibit enantioselection ability for bilirubin (BR) enantiomers. The recognition capability can be adjusted by the micellar structure, i.e., the rodlike micelles are better than either small spherical micelles or wormlike micelles, which might possess different chiral cavities, controlling BR shape and location. These results demonstrate that the aggregates of chiral gemini surfactants can be used to mimic the chiral recognition in biological membrane.

9.
Langmuir ; 34(38): 11220-11241, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-29616549

RESUMO

Oligomeric surfactants consist of three or more amphiphilic moieties which are connected by spacer groups covalently at the level of headgroups. It provides a possible route to bridge the gap from conventional single-chain surfactants to polymeric surfactants and leads to many profound improvements in the properties of surfactants in aqueous solution and at the air/water and water/solid interfaces. Generally, oligomeric surfactants are categorized into linear, ring-like, and star-shaped on the basis of the topological structures of their spacer groups, and their aggregation behavior strongly depends on the resultant topological structures. In recent years, we studied trimeric, tetrameric, and hexameric surfactants with a star-shaped spacer which spreads from a central site of elemental nitrogen or carbon, and their charged headgroups connect with each other through the spacers. It has been found that both the nature of spacer groups and the degree of oligomerization show important influences on the self-assembly of oligomeric surfactants and provide great possibilities in fabricating various surfactant aggregate morphologies by adjusting the molecule conformations. The unique self-assembly behavior endows them with superior physicochemical properties and potential applications. This feature article summarizes the development of star-shaped oligomeric surfactants, including self-assembly at the air/water and water/solid interfaces, self-assembly in aqueous solution, and their functions. We expect that this review could provide a comprehensive understanding of the structure-property relationship and various potential applications of star-shaped oligomeric surfactants and offer additional motivation for their future research.

10.
Soft Matter ; 13(47): 8980-8989, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29160329

RESUMO

This work studied gemini-like surfactants formed from anionic surfactant sodium dodecyl sulfate (SDS) and cationic charged bola-type diamines with hydrophilic or hydrophobic spacers of different lengths using surface tension, small angle neutron scattering, isothermal titration microcalorimetry and cryogenic transmission electron microscopy. The critical micelle concentrations (CMC) and the surface tension at CMC (γCMC) for all the diamine/SDS mixtures are markedly lower than that of SDS. The shorter diamines reduce γCMC to a greater extent regardless of the hydrophilicity/hydrophobicity of the diamines. Meanwhile, either the hydrophobic diamine with a longer spacer or the hydrophilic diamine with a shorter spacer is more beneficial to decrease CMC and leads to the transition from spherical micelles into rodlike or wormlike micelles. This is principally because of the formation of gemini-like surfactants by the electrostatic binding between SDS and the diamines, where the electrostatic repulsion between the adjacent headgroups of SDS becomes much weaker due to the electrostatic binding of oppositely charged diamine with SDS, and the longer hydrophobic spacer may also bend into the hydrophobic domain of micelles to promote micellar growth. However, the hydrophilic spacers are more compatible with the headgroup region, leading to micelles with a larger curvature. This work contributes to the understanding of the relationship between the properties of constructed gemini-like surfactants and the natures of connecting molecules, and provides guidance to efficiently improve the performance of surfactants.

11.
J Phys Chem B ; 121(29): 7122-7132, 2017 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-28686026

RESUMO

This work studied the interactions of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) with cationic ammonium surfactants and anionic sulfate or sulfonate surfactants of different oligomeric degrees, including cationic monomeric DTAB, dimeric C12C3C12Br2, and trimeric DDAD as well as anionic monomeric SDS, dimeric C12C3C12(SO3)2, and trimeric TED-(C10SO3Na)3. The partition coefficient P of these surfactants between the DOPC vesicles and water was determined with isothermal titration microcalorimetry (ITC) by titrating concentrated DOPC solution into the monomer solution of these surfactants. It was found that the P value increases with the increase of the surfactant oligomeric degree. Moreover, the enthalpy change and the Gibbs free energy for the transition of these surfactants from water into the DOPC bilayer become more negative with increasing the oligomeric degree. Meanwhile, the calcein release experiment proves that the surfactant with a higher oligomeric degree shows stronger ability of changing the permeability of the DOPC vesicles. Furthermore, the solubilization of the DOPC vesicles by these oligomeric surfactants was studied by ITC, turbidity, and dynamic light scattering, and thus the phase boundaries for the surfactant/lipid mixtures have been determined. The critical surfactant to lipid ratios for the onset and end of the solubilization for the DOPC vesicles derived from the phase boundaries decrease remarkably with increasing the oligomeric degree. Overall, the surfactant with a larger oligomerization degree shows stronger ability in incorporating into the lipid bilayer, altering the membrane permeability and solubilizing lipid vesicles, which provides comprehensive understanding about the effects of structure and shape of oligomeric surfactant molecules on lipid-surfactant interactions.


Assuntos
Micelas , Fosfolipídeos/química , Tensoativos/química , Ânions , Calorimetria , Cátions , Bicamadas Lipídicas/química , Oligonucleotídeos/química , Fosfatidilcolinas/química
12.
ACS Appl Mater Interfaces ; 9(28): 23333-23341, 2017 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-28640593

RESUMO

The interactions between a star-shaped hexameric cationic quaternary ammonium surfactant PAHB and calf thymus DNA and induced DNA condensation were investigated by ζ-potential, dynamic light scattering, atomic force microscopy, isothermal titration calorimetry, ethidium bromide exclusion assay, circular dichroism, and cytotoxicity assay. With the addition of PAHB, long extended DNA molecules exhibit successive conformational transitions from elongated coil to a partially condensed cluster-like aggregate, to a globules-on-a-string structure, and then to a fully condensed globule until the saturation point of interaction between PAHB and DNA, which is slightly above their charge neutralization point. The efficient condensation is mainly produced by the strong attractive electrostatic interaction between the multiple positively charged headgroups of PAHB and negatively charged phosphate groups of DNA, and the hydrophobic interaction among the multiple alkyl chains of PAHB. Moreover the transition of the DNA conformation is also affected by the transitions of PAHB molecular conformation from star-shaped to claw-like and pyramid-like. Although the DNA conformation is significantly changed by PAHB, the DNA secondary structure does not display obvious variations, and the PAHB/DNA mixture does not show cytotoxicity when DNA is partially condensed. These results indicate that star-shaped oligomeric cationic surfactant is a potential condensing agent for gene transfection.


Assuntos
Tensoativos/química , Dicroísmo Circular , DNA , Conformação de Ácido Nucleico , Compostos de Amônio Quaternário
13.
Langmuir ; 33(27): 6846-6856, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28622471

RESUMO

Coacervation in aqueous solution of the mixture of cationic ammonium surfactant hexamethylene-1,6-bis(dodecyldimethylammonium bromide) (12-6-12) and 10% hydrolyzed polyacrylamide (PAM) has been investigated. It was found that the 12-6-12/PAM mixture forms coacervate with a large network structure over a wide concentration range of surfactant and polyelectrolyte and shows great efficiency in the extraction of Methyl Orange (MO) from water owing to the cooperation of hydrophobic, electrostatic, and π-cation interactions. Meanwhile, the dye joins the coacervate and strengthens the network structure of the coacervate. In particular, benefiting from partial excess of 12-6-12 molecules, the coacervate phase presents selective adsorption behavior toward anionic dye MO in the presence of cationic dye methylene blue (MB). Furthermore, the coacervate phase is utilized to modify quartz sand and melamine foam, and the coacervate-treated adsorbents can adsorb MO efficiently. Moreover, the MO-loaded adsorbents are easily regenerated with hydrochloric acid, making this an inexpensive and environmentally benign process. These findings offer a simple and effective alternative for the treatment of dye contaminated water and the recovery of dyes.

14.
Langmuir ; 33(11): 2760-2769, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28013540

RESUMO

This work studied the interactions of an oppositely charged surfactant mixture of oleyl bis(2-hydroxyethyl)methyl ammonium bromide (OHAB) and sodium dodecyl sulfate (SDS) with 1,2-di-(9Z-octadecenoyl)-sn-glycero-3-phosphocholine (DOPC) vesicles as well as the penetration of the OHAB/SDS mixture through model skin, aimed at understanding the relationship between the ability of different surfactant aggregates in solubilizing phospholipid vesicles and their potential in irritating skin. By changing the molar fraction of OHAB (XOHAB), five kinds of aggregates are constructed: OHAB and SDS separately form cationic and anionic small micelles, whereas the OHAB/SDS mixtures form cationic and anionic vesicles at XOHAB = 0.30 and 0.70, respectively, and weakly charged vesicles at XOHAB = 0.50. The mixtures have much lower critical micellar concentrations (CMCs) and much larger aggregates than either OHAB or SDS alone, and the CMC and the size of the OHAB/SDS vesicles decrease with the increase in XOHAB. The phase diagrams indicate that the OHAB/SDS mixtures show much stronger ability in solubilizing the DOPC vesicles than individual OHAB and SDS and decrease in the order of XOHAB = 0.30 > 0.50 > 0.70 ≫ 1.00 > 0. However, the ability of the surfactants in penetrating the model skin decreases reversely, and the penetration of the surfactants are significantly reduced by mixing. These results indicate that the surfactant mixture with a larger aggregate size and a smaller CMC value displays much stronger ability in solubilizing the DOPC vesicles but much weaker ability in penetrating the skin.


Assuntos
Ânions/química , Cátions/química , Fosfolipídeos/química , Tensoativos/química , Micelas , Fosfatidilcolinas/química , Dodecilsulfato de Sódio/química
15.
Chem Asian J ; 11(19): 2763-2772, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27224261

RESUMO

A hexameric cationic ammonium surfactant (PAHB), in which six amphiphilic moieties were connected by a star-shaped spacer group, adopted star-shaped, claw-like, and pyramid-like molecular configurations in aqueous solution, depending on the concentration. Herein, we studied the effect of adding sodium dodecyl sulfate (SDS) on the configuration and aggregation behavior of PAHB. Taking these three configurations of PAHB as initial states, the addition of SDS caused transitions of the star-shaped and claw-like configurations into a pyramid-like configuration, whilst the pyramid-like configuration remained unchanged. Moreover, the SDS/PAHB aggregates experienced transition from small spheres to large spherical fingerprint-like aggregates, no matter the initial state of PAHB. Molecular packing in the aggregates was also studied. These results have improved our understanding about the cooperative interactions between star-shaped oligomeric surfactants and monomeric surfactants, which should guide future applications of this unique type of surfactant.

16.
J Phys Chem B ; 120(17): 4102-13, 2016 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-27096262

RESUMO

Interactions of multivalent metal counterions with anionic sulfonate gemini surfactant 1,3-bis(N-dodecyl-N-propanesulfonate sodium)-propane (C12C3C12(SO3)2) and the induced aggregate transitions in aqueous solution have been studied. Divalent metal ions Ca(2+), Mg(2+), Cu(2+), Zn(2+), Mn(2+), Co(2+), and Ni(2+) and trivalent metal ions Al(3+), Fe(3+), and Cr(3+) were chosen. The results indicate that the critical micelle concentration (CMC) of C12C3C12(SO3)2 is greatly reduced by the ions, and the aggregate morphologies of C12C3C12(SO3)2 are adjusted by changing the nature and molar ratio of the metal ions. These metal ions can be classified into four groups because the ions in each group have very similar interaction mechanisms with C12C3C12(SO3)2: (I) Cu(2+) and Zn(2+); (II) Ca(2+), Mn(2+) and Mg(2+); (III) Ni(2+) and Co(2+); and (IV) Cr(3+), Al(3+) and Fe(3+). Cu(2+), Mg(2+), Ni(2+), and Al(3+) then were selected as representatives for each group to further study their interaction with C12C3C12(SO3)2. C12C3C12(SO3)2 interacts with the multivalent metal ions by electrostatic interaction and coordination interaction. C12C3C12(SO3)2 forms prolate micelles and plate-like micelles with Cu(2+), vesicles and wormlike micelles with Al(3+) or Ni(2+), and viscous three-dimensional network structure with Mg(2+). Moreover, precipitation does not take place in aqueous solution even at a high ion/surfactant ratio. The related mechanisms have been discussed. The present work provides guidance on how to apply the anionic surfactant into the solutions containing the multivalent metal ions, and those aggregates may have potential usage in separating heavy metal ions from aqueous solutions.

17.
ACS Appl Mater Interfaces ; 8(6): 4242-9, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26820390

RESUMO

This work reports that cationic micelles formed by cationic trimeric, tetrameric, and hexameric surfactants bearing amide moieties in spacers can efficiently kill Gram-negative E. coli with a very low minimum inhibitory concentration (1.70-0.93 µM), and do not cause obvious toxicity to mammalian cells at the concentrations used. With the increase of the oligomerization degree, the antibacterial activity of the oligomeric surfactants increases, i.e., hexameric surfactant > tetrameric surfactant > trimeric surfactant. Isothermal titration microcalorimetry, scanning electron microscopy, and zeta potential results reveal that the cationic micelles interact with the cell membrane of E. coli through two processes. First, the integrity of outer membrane of E. coli is disrupted by the electrostatic interaction of the cationic ammonium groups of the surfactants with anionic groups of E. coli, resulting in loss of the barrier function of the outer membrane. The inner membrane then is disintegrated by the hydrophobic interaction of the surfactant hydrocarbon chains with the hydrophobic domains of the inner membrane, leading to the cytoplast leakage. The formation of micelles of these cationic oligomeric surfactants at very low concentration enables more efficient interaction with bacterial cell membrane, which endows the oligomeric surfactants with high antibacterial activity.


Assuntos
Anti-Infecciosos , Escherichia coli/crescimento & desenvolvimento , Micelas , Tensoativos , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Eletricidade Estática , Tensoativos/química , Tensoativos/farmacologia
18.
Soft Matter ; 12(1): 219-27, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26458054

RESUMO

The influence of perfume molecules on the self-assembly of the anionic surfactant sodium dodecyl sulfate (SDS) and their localization in SDS micelles have been investigated by ζ potential, small angle X-ray scattering (SAXS), one- and two-dimensional NMR and isothermal titration microcalorimetry (ITC). A broad range of perfume molecules varying in octanol/water partition coefficients P are employed. The results indicate that the surface charge, size and aggregation number of the SDS micelles strongly depend on the hydrophobicity/hydrophilicity degree of perfume molecules. Three distinct regions along the log P values are identified. Hydrophilic perfumes (log P < 2.0) partially incorporate into the SDS micelles and do not lead to micelle swelling, whereas hydrophobic perfumes (log P > 3.5) are solubilized close to the end of the hydrophobic chains in the SDS micelles and enlarge the micelles with higher ζ potential and a larger aggregation number. The incorporated fraction and micelle properties show increasing tendency for the perfumes in the intermediate log P region (2.0 < log P < 3.5). Besides, the molecular conformation of perfume molecules also affects these properties. The perfumes with a linear chain structure or an aromatic group can penetrate into the palisade layer and closely pack with the SDS molecules. Furthermore, the thermodynamic parameters obtained from ITC show that the binding of the perfumes in the intermediate log P region is more spontaneous than those in the other two log P regions, and the micellization of SDS with the perfumes is driven by entropy.


Assuntos
Micelas , Perfumes/química , Dodecilsulfato de Sódio/química , Interações Hidrofóbicas e Hidrofílicas , Octanóis/química
19.
Langmuir ; 30(27): 7968-76, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24933418

RESUMO

Cationic quaternary ammonium gemini surfactants C(n)H(2n+1)(CH3)2N(+)CH2CHCHCH2(CH3)2N(+)C(n)H(2n+1)2Br(-) (C(n)C4C(n), n = 12, 8, 6) with alkyl spacers, C(n)H(2n+1)(CH3)2N(+)CH2CHOHCHOHCH2(CH3)2N(+)C(n)H(2n+1)2Br(-) (C(n)C4(OH)2C(n), n = 12, 8, 6, 4) with two hydroxyl groups in alkyl spacers, and cationic ammonium single-chain surfactants C(n)H(2n+1)(CH3)2N(+)Br(-) (C(n)TAB, n = 12, 8, 6) have been chosen to fabricate oppositely charged surfactant mixtures with anionic sulfonate gemini surfactant C12H25N(CH2CH2CH2SO3(-))CH2CH2CH2(CH3)2N(CH2CH2CH2SO3(-))C12H252Na (C12C3C12(SO3)2). Surface tension, electrical conductivity, and isothermal titration microcalorimetry (ITC) were used to study their surface properties, aggregation behaviors, and intermolecular interactions. The mixtures of C12C3C12(SO3)2/C(n)C4(OH)2C(n) (n = 12, 8) and C12C3C12(SO3)2/C12C4C12 show anomalous larger critical micelle concentration (CMC) than C12C3C12(SO3)2, while the mixtures of C12C3C12(SO3)2/C(n)C4(OH)2C(n) (n = 6, 4), C12C3C12(SO3)2/C(n)C4(OH)2C(n) (n = 6, 4), and C12C3C12(SO3)2/C(n)TAB (n = 12, 8, 6) exhibit much lower CMC than C12C3C12(SO3)2. The results indicate that strong hydrophobic interactions between the alkyl chains assisted by strong electrostatic attractions between the headgroups and hydrogen bonds between the spacers lead to the formation of less surface active premicellar aggregates in bulk solution, resulting in the increase of CMC. If these interactions are weakened or inhibited, less surface active premicellar aggregates are no longer formed in the mixtures, and thus the CMC values are reduced. The work reveals that the combination of two surfactants with great self-assembling ability separately may have strong intermolecular binding interactions; however, their mixtures do not always generate superior synergism properties. Only moderate intermolecular interaction can generate the strongest synergism in CMC reduction.

20.
Langmuir ; 30(23): 6660-8, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24866373

RESUMO

The self-assembly of a 1% hydrophobically modified and 30% hydrolyzed polyacrylamide (C12PAM) with cationic star-shaped oligomeric surfactants has been investigated by isothermal titration microcalorimetry, turbidimetry, ζ potential, scanning electron microscopy, and (1)H NMR techniques. The oligomeric surfactants are composed of quaternary dodecyldimethylammonium ions with three or six hydrophobic chains connected by a polyamine spacer at the headgroup level, abbreviated as DTAD and PAHB, respectively. DTAD/C12PAM and PAHB/C12PAM mixed systems undergo the same aggregate transitions with increases in surfactant concentration from soluble networklike aggregates to precipitated denser and more cross-linked structures and then to soluble spherical aggregates. The networklike aggregates are generated at very low surfactant concentration. However, at the corresponding surfactant concentration without C12PAM, DTAD cannot form aggregates and PAHB forms only networklike aggregates with a very loose structure. The strong electrostatic and hydrophobic interaction of DTAD and PAHB with C12PAM and the hydrophobic interaction between the alkyl chains of DTAD and PAHB themselves evidently promote the formation of networklike aggregates. As the surfactant concentration increases, cationic surfactants become excessive. The molecular configuration is changed by the stronger hydrophobic association among the DTAD and PAHB molecules and the enhanced electrostatic repulsion between the mixed aggregates. Thus, the networklike aggregates transfer to spherical aggregates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...