Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.215
Filtrar
1.
J Hazard Mater ; 423(Pt B): 127150, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34530277

RESUMO

The rapid spread of antibiotic resistance genes (ARGs) has posed a risk to human health. Here, the effects of biochar (BC) on the horizontal transfer of ARG-carrying plasmids to Escherichia coli via transformation were systematically investigated. BC could significantly inhibit the transformation of ARGs and the inhibition degree increased with pyrolysis temperature. Rice straw-derived BC showed a stronger inhibitory effect on the transformation of ARGs than that of peanut shell-derived BC from the same pyrolysis temperature. The inhibitory effect of BC from low pyrolysis temperature (300 â„ƒ) was mainly caused by BC dissolutions, while it was mainly attributed to BC solids for high pyrolysis temperature (700 â„ƒ) BC. BC dissolutions could induce intramolecular condensation and even agglomeration of plasmids, hindering their transformation into competent bacteria. The cell membrane permeability was slightly decreased in BC dissolutions, which might also contribute to the inhibitory effect. Plasmid can be adsorbed by BC solids and the adsorption increased with BC pyrolysis temperature. Meanwhile, BC-adsorbed plasmid could hardly be transformed into E. coli. BC solids could also deactivate E. coli and thereby inhibit their uptake of ARGs. These findings provide a way using BC to limit the spread of ARGs in the environment.

2.
Research (Wash D C) ; 2021: 9873135, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34755115

RESUMO

Endocrine-disrupting chemicals (EDCs) are widespread environmental chemicals that are often considered as risk factors with weak activity on the hormone-dependent process of pregnancy. However, the adverse effects of EDCs in the body of pregnant women were underestimated. The interaction between dynamic concentration of EDCs and endogenous hormones (EHs) on gestational age and delivery time remains unclear. To define a temporal interaction between the EDCs and EHs during pregnancy, comprehensive, unbiased, and quantitative analyses of 33 EDCs and 14 EHs were performed for a longitudinal cohort with 2317 pregnant women. We developed a machine learning model with the dynamic concentration information of EDCs and EHs to predict gestational age with high accuracy in the longitudinal cohort of pregnant women. The optimal combination of EHs and EDCs can identify when labor occurs (time to delivery within two and four weeks, AUROC of 0.82). Our results revealed that the bisphenols and phthalates are more potent than partial EHs for gestational age or delivery time. This study represents the use of machine learning methods for quantitative analysis of pregnancy-related EDCs and EHs for understanding the EDCs' mixture effect on pregnancy with potential clinical utilities.

3.
Infect Genet Evol ; : 105159, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34839024

RESUMO

Based on previous reports,toll-like receptors (TLRs) are recognition molecules common in various aquatic animals and play a vital role in innate immunity. In this study, a novel TLR CgToll-3 with leucine-rich repeats (LRRs) and a TIR (Toll-interleukin 1-resistance) domain was cloned in Crassostrea gigas. CgToll-3 with sixteen potential extracellular N-linked glycosylation sites and shares the closest phylogenic relationship with molluscan TLRs. Alignment of LRRs and TIR domains indicated that CgToll-3 was highly conserved compared to other LRRs of mollusks which could respond against Vibrio or other bacterial molecules, and contained three conserved functionally important motifs (Box 1, Box 2, and Box 3). The Hex Molecular Docking result showed that CgToll-3 could interact with CgMyd88 via the TIR domain. Subcellular Co-localization and BiFC Assay confirmed this interaction, and they could induce NF-κB activation. CgToll-3 was moderately expressed in the digestive gland, and its expression level was significantly up-regulated after Vibrio alginolyticus challenge. Taken together, CgToll-3 might be involved in the innate immune response to V. alginolyticus for C. gigas through a MyD88-dependent TLR mediated signaling pathway.

4.
Exp Ther Med ; 22(6): 1443, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34721685

RESUMO

Hydrogen peroxide (H2O2) can induce apoptosis by releasing reactive oxygen species (ROS) and reactive nitrogen species, which cause mitochondrial damage. The present study aimed to investigate the protective effects of flavonoids from the leaves of Carya cathayensis Sarg. against H2O2-induced oxidative damage and apoptosis in vitro. The bioactivity of total flavonoids (TFs) and five monomeric flavonoids [cardamonin (Car), pinostrobin chalcone, wogonin, chrysin and pinocembrin] from the leaves of Carya cathayensis Sarg. (LCCS) were tested to prevent oxidative damage to rat aortic endothelial cells (RAECs) induced by H2O2. Oxidated superoxide dismutase, glutathione peroxidase, malondialdehyde, lactate dehydrogenase and ROS were analyzed to evaluate the antioxidant activity. Gene and protein expression patterns were assessed using reverse transcription-quantitative PCR and western blotting, respectively. The results indicated that TFs and Car inhibited H2O2-induced cytotoxicity and apoptosis of RAECs. Additionally, they regulated the level of oxidase and inhibited the production of ROS. Overall, the TFs extracted from LCCS could potentially be developed as effective candidate drugs to prevent oxidative stress in the future; moreover, they could also provide a direction in investigations for preventing antioxidant activity through the ROS pathway.

5.
Nat Biomed Eng ; 5(11): 1306-1319, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34725506

RESUMO

Antigen release resulting from the death of tumour cells induced by chemotherapies and targeted therapies can augment the antitumour responses induced by immune checkpoint blockade (ICB). However, tumours responding to ICB therapies often become resistant to them. Here we show that the specific targeting of tumour cells promotes the growth of tumour-cell variants that are resistant to ICB, and that the acquired resistance can be overcome via the concurrent depletion of tumour cells and of major types of immunosuppressive cell via a monoclonal antibody binding the enzyme CD73, which we identified as highly expressed on tumour cells and on regulatory T cells, myeloid-derived suppressor cells and tumour-associated macrophages, but not on cytolytic T lymphocytes, natural killer cells and dendritic cells. In mice with murine tumours, the systemic administration of anti-PD1 antibodies and anti-CD73 antibodies conjugated to a near-infrared dye prevented near-infrared-irradiated tumours from acquiring resistance to ICB and resulted in the eradication of advanced tumours. The elimination of immunosuppressive cells may overcome acquired resistance to ICB across a range of tumour types and combination therapies.

6.
Gut ; 2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34836916

RESUMO

OBJECTIVE: Helicobacter pylori infection is mostly a family-based infectious disease. To facilitate its prevention and management, a national consensus meeting was held to review current evidence and propose strategies for population-wide and family-based H. pylori infection control and management to reduce the related disease burden. METHODS: Fifty-seven experts from 41 major universities and institutions in 20 provinces/regions of mainland China were invited to review evidence and modify statements using Delphi process and grading of recommendations assessment, development and evaluation system. The consensus level was defined as ≥80% for agreement on the proposed statements. RESULTS: Experts discussed and modified the original 23 statements on family-based H. pylori infection transmission, control and management, and reached consensus on 16 statements. The final report consists of three parts: (1) H. pylori infection and transmission among family members, (2) prevention and management of H. pylori infection in children and elderly people within households, and (3) strategies for prevention and management of H. pylori infection for family members. In addition to the 'test-and-treat' and 'screen-and-treat' strategies, this consensus also introduced a novel third 'family-based H. pylori infection control and management' strategy to prevent its intrafamilial transmission and development of related diseases. CONCLUSION: H. pylori is transmissible from person to person, and among family members. A family-based H. pylori prevention and eradication strategy would be a suitable approach to prevent its intra-familial transmission and related diseases. The notion and practice would be beneficial not only for Chinese residents but also valuable as a reference for other highly infected areas.

7.
Artigo em Inglês | MEDLINE | ID: mdl-34837266

RESUMO

The human body contains more than 100 trillion microorganisms, including the oral cavity, the skin and the gastrointestinal tract. After the gastrointestinal tract, the oral cavity harbors one of the most diverse microbial communities within the human body, and harbor more than 770 species of bacteria. The composition of the oral and gut microbiomes is quite different, but there may be a microbiological link between the two mucosal sites during the course of disease. More studies indicate that oral bacteria can disseminate to the distal gut via enteral or hematogenous routes. This is mostly obvious in periodontitis, where specific bacteria, such as Fusobacterium nucleatum and Porphyromonas gingivalis show this pathogenic feature. The translocation of oral microbes to the gut may give rise to a variety of gastrointestinal diseases, including Colorectal Cancer. However, the precise role that oral microbe play in Colorectal Cancer hasn't been fully illustrated. Here, we summarize the current researches on possible pathways of ectopic gut colonization by oral bacteria and their possible contribution to the pathogenesis of colorectal cancer. Understanding the correlation of the oral-to-gut microbial axis in the pathogenesis of colorectal cancer will be contribute to precise diagnosis and effective treatment.

8.
Ecotoxicol Environ Saf ; 228: 112954, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34739934

RESUMO

As an extensively environmental pollution, Nickel (Ni) represents a serious hazard to human health. The present study focused on exploring the mechanism of Ni-mediated nephrotoxicity, such as apoptosis, autophagy and oxidative stress. In the current work, NiCl2 treatment could induce kidney damage. Meanwhile, NiCl2 treatment elevated ROS production and MDA content and suppressed the antioxidant activity, which was characterized by reducing T-AOC, CAT, SOD activity and GSH content. For investigating the role of oxidative stress on NiCl2-mediated nephrotoxicity, N-acetyl cysteine (NAC, effective antioxidant and free radical scavenger) was co-treated with NiCl2. The results showed that NAC significantly suppressed the NiCl2-mediated oxidative stress and mitigated NiCl2-induced the kidney damage. Then, whether oxidative stress-induced autophagy and apoptosis were involved in NiCl2-induced nephrotoxicity was explored. The findings demonstrated that NAC relieved NiCl2-induced autophagy and reversed the activation of Akt/AMPK/mTOR pathway. Concurrently, the results indicated that NAC attenuated NiCl2-induced apoptosis, as evidenced by reduction of apoptotic cells and cleaved-caspase-3/- 8/- 9 together with cleaved-PARP protein levels. To sum up, our findings suggested that NiCl2-mediated renal injury was associated with oxidative stress-induced apoptosis and autophagy. This study provides new theoretical basis for excess Ni exposure nephrotoxic researches.

9.
Front Microbiol ; 12: 700704, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34616374

RESUMO

Transportation is an inevitable phase for the cattle industry, and its effect on the respiratory system of transported cattle remains controversial. To reveal cattle's nasopharyngeal microbiota dynamics, we tracked a batch of beef calves purchased from an auction market, transported to a farm by vehicle within 3 days, and adaptively fed for 7 days. Before and after the transport and after the placement, a total of 18 nasopharyngeal mucosal samples were collected, and microbial profiles were obtained using a metagenomic shotgun sequencing approach. The diversity, composition, structure, and function of the microbiota were collected at each time point, and their difference was analyzed. The results showed that, before the transportation, there were a great abundance of potential bovine respiratory disease (BRD)-related pathogens, and the transportation did not significantly change their abundance. After the transportation, 7 days of placement significantly decreased the risk of BRD by decreasing the abundance of potential BRD-related pathogens even if the diversity was decreased. We also discussed the controversial results of transportation's effect in previous works and the decrease in diversity induced by placement. Our work provided more accurate information about the effect of transportation and the followed placement on the calf nasopharyngeal microbial community, indicated the importance of adaptive placement after long-distance transport, and is helpful to prevent BRD induced by transportation stress.

10.
Front Pharmacol ; 12: 671152, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630075

RESUMO

Advanced liver fibrosis can lead to cirrhosis, resulting in an accelerated risk of hepatocellular carcinoma and liver failure. Fuzheng Huayu formula (FZHY) is a traditional Chinese medicine formula treated liver fibrosis in China approved by a Chinese State Food and Drug Administration (NO: Z20050546), composed of Salvia Miltiorrhiza bge., Prunus davidiana (Carr.) Franch., cultured Cordyceps sinensis (BerK.) Sacc. Mycelia, Schisandra chinensis (Turcz.) Baill., Pinus massoniana Lamb., and Gynostemma pentaphyllum (Thunb.) Makino. However, the main active substances and mechanism of FZHY are unclear. The aim of this study is to identify a novel anti-fibrotic compound, which consists of the main active ingredients of FZHY, and investigate its mechanism of pharmacological action. The main active ingredients of FZHY were investigated by quantitative analysis of FZHY extracts and FZHY-treated plasma and liver in rats. The anti-fibrotic composition of the main active ingredients was studied through uniform design in vivo, and its mechanism was evaluated in carbon tetrachloride (CCl4)- and bile duct ligation (BDL)-induced liver fibrosis models in rats and mice, and transforming growth factor beta 1-induced LX-2 cell activation model in vitro. A novel Chinese medicine, namely JY5 formula, consisting of salvianolic acid B, schisantherin A, and amygdalin, the main active ingredients of FZHY, significantly alleviated hepatic hydroxyproline content and collagen deposition in CCl4-and BDL-induced fibrotic liver in rats and mice. In addition, JY5 inhibited the activation of hepatic stellate cells (HSCs) by inactivating Notch signaling in vitro and in vivo. In this study, we found a novel JY5 formula, which exerted anti-hepatic fibrotic effects by inhibiting the Notch signaling pathway, consequently suppressing HSCs activation. These results provide an adequate scientific basis for clinical research and application of the JY5 formula, which may be a potential novel therapeutic candidate for liver fibrosis.

11.
Cancers (Basel) ; 13(20)2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34680233

RESUMO

Lenalidomide as well as other immunomodulatory drugs (IMiDs) have achieved clinical efficacies in certain sub-types of hematologic malignancies, such as multiple myeloma, lower-risk myelodysplastic syndromes (MDS) with a single deletion of chromosome 5q (del(5q)) and others. Despite superior clinical response to lenalidomide in hematologic malignancies, relapse and resistance remains a problem in IMiD-based therapy. The last ten years have witnessed the discovery of novel molecular mechanism of IMiD-based anti-tumor therapy. IMiDs bind human cereblon (CRBN), the substrate receptor of the CRL4 E3 ubiquitin ligase complex. Binding of CRBN with IMiDs leads to degradation of the Ikaros family zinc finger proteins 1 and 3 (IKZF1 and IKZF3) and casein kinase 1 alpha. We have found that lenalidomide-mediated degradation of IKZF1 leads to activation of the G protein-coupled receptor 68 (GPR68)/calcium/calpain pro-apoptotic pathway and inhibition of the regulator of calcineurin 1 (RCAN1)/calcineurin pro-survival pathway in MDS and acute myeloid leukemia (AML). Calcineurin inhibitor Cyclosporin-A potentiates the anti-leukemia activity of lenalidomide in MDS/AML with or without del(5q). These findings broaden the therapeutic potential of IMiDs. This review summarizes novel molecular mechanism of lenalidomide in myeloid malignancies, especially without del(5q), in the hope to highlight novel therapeutic targets.

12.
13.
Biomed Phys Eng Express ; 8(1)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34700306

RESUMO

Objective. Vertebrae models from computer tomographic (CT) imaging are extensively used in image-guided surgical systems to deliver percutaneous orthopaedic operations with minimum risks, but patients may be exposed to excess radiation from the pre-operative CT scans. Generating vertebrae models from intra-operative x-rays for image-guided systems can reduce radiation exposure to the patient, and the surgeons can acquire the vertebrae's relative positions during the operation; therefore, we proposed a lumbar vertebrae reconstruction method from biplanar x-rays.Approach. Non-stereo-corresponding vertebral landmarks on x-rays were identified as targets for deforming a set of template vertebrae; the deformation was formulated as a minimisation problem, and was solved using the augmented Lagrangian method. Mean surface errors between the models reconstructed using the proposed method and CT scans were measured to evaluate the reconstruction accuracy.Main results. The evaluation yielded mean errors of 1.27 mm and 1.50 mm inin vitroexperiments on normal vertebrae and pathological vertebrae, respectively; the outcomes were comparable to other template-based methods.Significance. The proposed method is a viable alternative to provide digital lumbar to be used in image-guided systems, where the models can be used as a visual reference in surgical planning and image-guided applications in operations where the reconstruction error is within the allowable surgical error.

14.
Acta Biochim Biophys Sin (Shanghai) ; 53(11): 1417-1427, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34664059

RESUMO

Cancer cells are often exposed to cell intrinsic stresses and environmental perturbations that may lead to accumulation of unfolded and/or misfolded proteins in the lumen of endoplasmic reticulum (ER), a cellular condition known as ER stress. In response to ER stress, the cells elicit an adaptive process called unfolded protein response (UPR) to cope with the stress, supporting cellular homeostasis and survival. The ER stress sensors inositol requiring protein 1α (IRE1α), eukaryotic translation initiation factor 2 alpha kinase 3 (EIF2AK3, also called PERK), and activating transcription factor 6 (ATF6) constitute the three branches of UPR to resolve ER stress. IRE1α, PERK, and ATF6 play an important role in tumor cell growth and survival. They are also involved in chemotherapy resistance of cancers. These have generated widespread interest in targeting these UPR branches for cancer treatment. In this review, we provide an overview of the role of IRE1α, PERK, and ATF6 in cancer progression and drug resistance and we summarize the research advances in targeting these UPR branches to enhance the efficacy of chemotherapy of cancers.

15.
Carcinogenesis ; 42(11): 1357-1369, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34657150

RESUMO

Gαq subfamily proteins play critical roles in many biological functions including cardiovascular development, angiogenesis, and tumorigenesis of melanoma. However, the understanding of G Protein Subunit Alpha 14 (GNA14) in diseases, especially in cancers is limited. Here, we revealed that GNA14 was significantly low expression in Human hepatocellular carcinoma (HCC) samples. Low GNA14 expression was correlated with aggressive clinicopathological features. Moreover, the overall survival (OS) and disease-free survival (DFS) of high GNA14 expression HCC patients were much better than low GNA14 expression group. Lentivirus-mediated GNA14 knockdown significantly promoted the growth of liver cancer in vitro and in vivo. However, opposing results were observed when GNA14 is upregulated. Mechanistically, We identified receptor for activated C kinase 1 (RACK1) as a binding partner of GNA14 by co-immunoprecipitation and mass spectrometry (MS). Glutathione-S-transferase (GST) pull-down assay further verified the direct interaction between GNA14 and RACK1. RNA-Seq and loss- and gain-of-function assays also confirmed that GNA14 reduced the activity of both MAPK/JNK and PI3K/AKT signaling pathways through RACK1. GNA14 synergized with U73122 (PLC inhibitor) to enhance this effect. Further studies suggested that GNA14 potentially competed with protein kinase C (PKC) to bind with RACK1, consequently reducing the stability of PKC. Moreover, we also showed that GNA14'supression of p-AKT protein level depended on sufficient RACK1 expression. In conclusion, we indicated a different role of GNA14, which acted as a suppressor inhibiting liver cancer progression through MAPK/JNK and PI3K/AKT signaling pathways. Due to this, GNA14 served as a potentially valuable prognostic biomarker for liver cancer.

16.
Biol Trace Elem Res ; 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34674107

RESUMO

Cadmium (Cd) contamination in the environment is a major public health concern since it has been linked to osteoporosis and other bone deformities. Linarin is a flavonoid glycoside, and it can promote osteoblastogenesis. This research aimed to investigate the potential role of linarin against Cd-exposed bone deformations in mice model. In our research, male mice were randomly allocated into four groups: control, Cd-exposed, and Cd + linarin (20 and 40mg/kg/bw, respectively). Linarin prevented body weight loss, increased serum calcium (Ca) and phosphorus (P), and bone alkaline phosphatase (BAP) levels in Cd-exposed groups. Furthermore, linarin treatment at 20 and 40mg/kg/bw significantly decreased RANK and OPG, resulting in an increase in RANKL mRNA levels and protein distribution in the bone of Cd-exposed mice. In addition, the bone of Cd-exposed mice administered with linarin showed higher TRAP, NFATc1, MMP9, and RUNX2 mRNA levels and protein distribution. Linarin significantly decreased oxidative stress in Cd-exposed mice bone by decreasing MDA, a lipid peroxidation product. Moreover, linarin protects Cd-exposed mice antioxidant enzymes by increasing bone SOD, CAT, and GPx levels. Besides, linarin suppresses alterations in the inflammatory system, i.e., NF-κB p65/IKKß, by reducing NF-κB p65, IKKß, IL-6, and TNF-α in the bone of Cd-exposed animals. This study concluded that linarin has potential to cure osteoporosis in Cd-exposed mice by reducing oxidative stress and inflammation and modulating the RANK/RANKL/OPG pathway.

17.
Cancer Cell ; 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34678150

RESUMO

Resistance can occur in patients receiving adoptive cell therapy (ACT) due to antigen-loss-variant (ALV) cancer cell outgrowth. Here we demonstrate that murine and human T helper (Th) 9 cells, but not Th1/Tc1 or Th17 cells, expressing tumor-specific T cell receptors (TCRs) or chimeric antigen receptors (CARs), eradicate advanced tumors that contain ALVs. This unprecedented antitumor capacity of Th9 cells is attributed to both enhanced direct tumor cell killing and bystander antitumor effects promoted by intratumor release of interferon (IFN) α/ß. Mechanistically, tumor-specific Th9 cells increase the intratumor accumulation of extracellular ATP (eATP; released from dying tumor cells), because of a unique feature of Th9 cells that lack the expression of ATP degrading ectoenzyme cluster of differentiation (CD) 39. Intratumor enrichment of eATP promotes the monocyte infiltration and stimulates their production of IFNα/ß by inducing eATP-endogenous retrovirus-Toll-like receptor 3 (TLR3)/mitochondrial antiviral signaling (MAVS) pathway activation. These results identify tumor-specific Th9 cells as a unique T cell subset endowed with the unprecedented capacity to eliminate ALVs for curative responses.

18.
Int J Gen Med ; 14: 4897-4911, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34475781

RESUMO

Purpose: Patients with gastric cancer (GC) often die from metastasis. However, the exact molecular mechanism underlying GC metastasis is complicated and still remains elusive. Epidermal growth factor, latrophilin and seven-transmembrane domain-containing 1 (ELTD1), has been reported to be involved in cancer metastasis, but its role in GC is still missing. Patients and Methods: We first analyzed the expression of ELTD1 in GC using public databases (TCGA, Oncomine, and GEO) and our clinical samples. The functions of ELTD1 in GC proliferation, invasion and metastasis were determined by in vitro and in vivo experiments. The functional mechanism of ETLD1 in GC was also investigated. Finally, the association between ELTD1 expression and the overall survival of GC patients was analyzed using public databases. Results: ELTD1 is significantly upregulated in GC tissues. Knockdown of ELTD1 inhibits GC cell proliferation, migration and invasion in vitro as well as tumor growth and metastasis in vivo, while ELTD1 overexpression obtains opposite results. Moreover, ELTD1 could promote epithelial to mesenchymal transition (EMT) in GC. Mechanistically, ELTD1 exerts its tumor-promoting effect by activating MAPK/ERK signaling. Subsequent studies demonstrated that ELTD1 could interact with C-terminal Src kinase (CSK) and inhibit its expression, which finally lead to MAPK/ERK activation. Data from TGCA and GEO both revealed that GC patients with high ELTD1 expression had poorer prognosis and the combination of ELTD1 with CSK showed better predictive performance. Conclusion: ELTD1 plays an oncogene role in GC through MAPK/ERK signaling via inhibiting CSK, which may be a useful prognostic predictor and potential therapeutic target for GC.

19.
JCI Insight ; 6(18)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34549727

RESUMO

Aiming to identify rare high-penetrance mutations in new genes for the underlying predisposition in familial colorectal cancer (CRC), we performed whole-exome sequencing in 24 familial CRCs. Mutations in genes that regulate DNA repair (RMI1, PALB2, FANCI) were identified that were related to the Fanconi anemia DNA repair pathway. In one pedigree, we found a nonsense mutation in CHEK2. CHEK2 played an essential role in cell cycle and DNA damage repair. Somatic mutation analysis in CHEK2 variant carriers showed mutations in TP53, APC, and FBXW7. Loss of heterozygosity was found in carcinoma of CHEK2 variant carrier, and IHC showed loss of Chk2 expression in cancer tissue. We identified a second variant in CHEK2 in 126 sporadic CRCs. A KO cellular model for CHEK2 (CHEK2KO) was generated by CRISPR/Cas9. Functional experiments demonstrated that CHEK2KO cells showed defective cell cycle arrest and apoptosis, as well as reduced p53 phosphorylation, upon DNA damage. We associated germline mutations in genes that regulate the DNA repair pathway with the development of CRC. We identified CHEK2 as a regulator of DNA damage response and perhaps as a gene involved in CRC germline predisposition. These findings link CRC predisposition to the DNA repair pathway, supporting the connection between genome integrity and cancer risk.

20.
J Hazard Mater ; 416: 125903, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492839

RESUMO

Copper is considered as an indispensable trace element for living organisms. However, over-exposure to Cu can lead to adverse health effects on human. In this study, CuSO4 decreased sperm concentration and motility, increased sperm malformation rate. Concurrently, testicular damage including testicular histopathological aberrations and reduction of testis relative weight were observed. Then, the mechanism underlying Cu-induced testicular toxicity was explored. According to the results, CuSO4 elevated ROS production while reducing antioxidant function. Additionally, CuSO4 induced apoptosis which was featured by MMP depolarization and up-regulated levels of cleaved-caspase-3, cleaved-caspase-8, cleaved-caspase-9, caspase-12, cleaved-PARP and Bax, whereas down-regulated Bcl-2 expression. Meanwhile, CuSO4 caused testis DNA damage (up-regulation of γ-H2AX protein expression) and suppressed DNA repair pathways including BER, NER, HR, MMR, together with the NHEJ repair pathways, yet did not affect MGMT. To investigate the role of oxidative stress in CuSO4-induced apoptosis and DNA damage, the antioxidant NAC was co-treated with CuSO4. NAC attenuated CuSO4-induced ROS production, inhibited apoptosis and DNA damage. Furthermore, the spermatogenesis disorder was also abolished in the co-treatment with CuSO4 and NAC group. Altogether, abovementioned results indicated that CuSO4-induced spermatogenesis disorder is related to oxidative stress-mediated DNA damage and germ cell apoptosis, impairing male reproductive function.


Assuntos
Estresse Oxidativo , Espermatogênese , Apoptose , Dano ao DNA , Humanos , Masculino , Espermatozoides , Testículo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...