Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36903097

RESUMO

In this study, functional graphene oxide (f-GO) nanosheets were prepared to enhance the NO2 resistibility of room-temperature-vulcanized (RTV) silicone rubber. A nitrogen dioxide (NO2) accelerated aging experiment was designed to simulate the aging process of nitrogen oxide produced by corona discharge on a silicone rubber composite coating, and then electrochemical impedance spectroscopy (EIS) was used to test the process of conductive medium penetration into silicone rubber. After exposure to the same concentration (115 mg·L-1) of NO2 for 24 h, at an optimal filler content of 0.3 wt.%, the impedance modulus of the composite silicone rubber sample was 1.8 × 107 Ω·cm2, which is an order of magnitude higher than that of pure RTV. In addition, with an increase in filler content, the porosity of the coating decreases. When the content of the nanosheet increases to 0.3 wt.%; the porosity reaches a minimum value 0.97 × 10-4%, which is 1/4 of the porosity of the pure RTV coating, indicating that this composite silicone rubber sample has the best resistance to NO2 aging.

2.
Proc Natl Acad Sci U S A ; 120(7): e2213670120, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36749723

RESUMO

Autophagy supports the fast growth of established tumors and promotes tumor resistance to multiple treatments. Inhibition of autophagy is a promising strategy for tumor therapy. However, effective autophagy inhibitors suitable for clinical use are currently lacking. There is a high demand for identifying novel autophagy drug targets and potent inhibitors with drug-like properties. The transcription factor EB (TFEB) is the central transcriptional regulator of autophagy, which promotes lysosomal biogenesis and functions and systematically up-regulates autophagy. Despite extensive evidence that TFEB is a promising target for autophagy inhibition, no small molecular TFEB inhibitors were reported. Here, we show that an United States Food and Drug Administration (FDA)-approved drug Eltrombopag (EO) binds to the basic helix-loop-helix-leucine zipper domain of TFEB, specifically the bottom surface of helix-loop-helix to clash with DNA recognition, and disrupts TFEB-DNA interaction in vitro and in cellular context. EO selectively inhibits TFEB's transcriptional activity at the genomic scale according to RNA sequencing analyses, blocks autophagy in a dose-dependent manner, and increases the sensitivity of glioblastoma to temozolomide in vivo. Together, this work reveals that TFEB is targetable and presents the first direct TFEB inhibitor EO, a drug compound with great potential to benefit a wide range of cancer therapies by inhibiting autophagy.


Assuntos
Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Preparações Farmacêuticas/metabolismo , Autofagia/genética , Linhagem Celular Tumoral , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Expressão Gênica , Lisossomos/metabolismo
3.
Commun Biol ; 6(1): 107, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36707692

RESUMO

Aminoacyl-tRNA synthetases (AARSs), a family of essential protein synthesis enzymes, are attractive targets for drug development. Although several different types of AARS inhibitors have been identified, AARS covalent inhibitors have not been reported. Here we present five unusual crystal structures showing that threonyl-tRNA synthetase (ThrRS) is covalently inhibited by a natural product, obafluorin (OB). The residue forming a covalent bond with OB is a tyrosine in ThrRS active center, which is not commonly modified by covalent inhibitors. The two hydroxyl groups on the o-diphenol moiety of OB form two coordination bonds with the conserved zinc ion in the active center of ThrRS. Therefore, the ß-lactone structure of OB can undergo ester exchange reaction with the phenolic group of the adjacent tyrosine to form a covalent bond between the compound and the enzyme, and allow its nitrobenzene structure to occupy the binding site of tRNA. In addition, when this tyrosine was replaced by a lysine or even a weakly nucleophilic arginine, similar bonds could also be formed. Our report of the mechanism of a class of AARS covalent inhibitor targeting multiple amino acid residues could facilitate approaches to drug discovery for cancer and infectious diseases.


Assuntos
Aminoacil-tRNA Sintetases , Treonina-tRNA Ligase , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Tirosina , Zinco , Treonina-tRNA Ligase/metabolismo , Sítios de Ligação
4.
Biochem Biophys Rep ; 33: 101426, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36647555

RESUMO

Aminoacyl-tRNA synthetases (aaRSs) catalyze the ligation of amino acids to cognate tRNAs by consuming one molecule of ATP. Magnesium is essential for the enzymes' activity. Certain class II aaRSs, such as lysyl-tRNA synthetase (LysRS) and seryl-tRNA synthetase (SerRS), recognize ATP together with three magnesium ions in the active site. The detailed role of how these magnesium ions facilitate the ATP recognition by the enzyme is unclear. Here, we report analyses of a crystal structure of human LysRS, in which the two enzymatic pockets of the LysRS dimer are in different states. One pocket is vacant of ATP, and the other is in an intermediate state of ATP recognition. Interestingly, only one magnesium ion instead of three is bound in both states. Compared with our previously solved LysRS structures, we proposed the order of binding for the three magnesium ions. These structures also reveal multiple intermediate ATP-bound states during the amino acid activation reaction, providing critical insights into the mechanisms of the magnesium-dependent enzyme activity of class II aaRSs.

5.
Cell Res ; 33(1): 55-70, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36588115

RESUMO

Microphthalmia transcription factor (MITF) regulates melanocyte development and is the "lineage-specific survival" oncogene of melanoma. MITF is essential for melanoma initiation, progression, and relapse and has been considered an important therapeutic target; however, direct inhibition of MITF through small molecules is considered impossible, due to the absence of a ligand-binding pocket for drug design. Here, our structural analyses show that the structure of MITF is hyperdynamic because of its out-of-register leucine zipper with a 3-residue insertion. The dynamic MITF is highly vulnerable to dimer-disrupting mutations, as we observed that MITF loss-of-function mutations in human Waardenburg syndrome type 2 A are frequently located on the dimer interface and disrupt the dimer forming ability accordingly. These observations suggest a unique opportunity to inhibit MITF with small molecules capable of disrupting the MITF dimer. From a high throughput screening against 654,650 compounds, we discovered compound TT-012, which specifically binds to dynamic MITF and destroys the latter's dimer formation and DNA-binding ability. Using chromatin immunoprecipitation assay and RNA sequencing, we showed that TT-012 inhibits the transcriptional activity of MITF in B16F10 melanoma cells. In addition, TT-012 inhibits the growth of high-MITF melanoma cells, and inhibits the tumor growth and metastasis with tolerable toxicity to liver and immune cells in animal models. Together, this study demonstrates a unique hyperdynamic dimer interface in melanoma oncoprotein MITF, and reveals a novel approach to therapeutically suppress MITF activity.


Assuntos
Melanoma , Microftalmia , Animais , Humanos , Fatores de Transcrição/metabolismo , Microftalmia/genética , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Regulação da Expressão Gênica , Proteínas Oncogênicas/genética , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
6.
Eur J Med Chem ; 247: 115013, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36566714

RESUMO

Aldo-keto reductase 1C3 (AKR1C3) is overexpressed in multiple hormone related cancers, such as breast and prostate cancer, and is correlated with tumor development and aggressiveness. As a phase I biotransformation enzyme, AKR1C3 catalyzes the metabolic processes that lead to resistance to anthracyclines, the "gold standard" for breast cancer treatment. Novel approaches to restore the chemotherapy sensitivity of breast cancer are urgently required. Herein, we developed a new class of AKR1C3 inhibitors that demonstrated potent inhibitory activity and exquisite selectivity for closely related isoforms. The best derivative 27 (S19-1035) exhibits an IC50 value of 3.04 nM for AKR1C3 and >3289-fold selectivity over other isoforms. We determined the co-crystal structures of AKR1C3 with three of the inhibitors, providing a solid foundation for further structure-based drug optimization. Co-administration of these AKR1C3 inhibitors significantly reversed the doxorubicin (DOX) resistance in a resistant breast cancer cell line. Therefore, the novel AKR1C3 specific inhibitors developed in this work may serve as effective adjuvants to overcome DOX resistance in breast cancer treatment.


Assuntos
Neoplasias da Mama , Masculino , Humanos , Neoplasias da Mama/tratamento farmacológico , Preparações Farmacêuticas , Hidroxiprostaglandina Desidrogenases/química , Hidroxiprostaglandina Desidrogenases/metabolismo , 3-Hidroxiesteroide Desidrogenases/metabolismo , Membro C3 da Família 1 de alfa-Ceto Redutase , Antibióticos Antineoplásicos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química
7.
Nucleic Acids Res ; 50(20): 11755-11774, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36350636

RESUMO

Mitochondrial translation is of high significance for cellular energy homeostasis. Aminoacyl-tRNA synthetases (aaRSs) are crucial translational components. Mitochondrial aaRS variants cause various human diseases. However, the pathogenesis of the vast majority of these diseases remains unknown. Here, we identified two novel SARS2 (encoding mitochondrial seryl-tRNA synthetase) variants that cause a multisystem disorder. c.654-14T > A mutation induced mRNA mis-splicing, generating a peptide insertion in the active site; c.1519dupC swapped a critical tRNA-binding motif in the C-terminus due to stop codon readthrough. Both mutants exhibited severely diminished tRNA binding and aminoacylation capacities. A marked reduction in mitochondrial tRNASer(AGY) was observed due to RNA degradation in patient-derived induced pluripotent stem cells (iPSCs), causing impaired translation and comprehensive mitochondrial function deficiencies. These impairments were efficiently rescued by wild-type SARS2 overexpression. Either mutation caused early embryonic fatality in mice. Heterozygous mice displayed reduced muscle tissue-specific levels of tRNASers. Our findings elucidated the biochemical and cellular consequences of impaired translation mediated by SARS2, suggesting that reduced abundance of tRNASer(AGY) is a key determinant for development of SARS2-related diseases.


Assuntos
Aminoacil-tRNA Sintetases , COVID-19 , Serina-tRNA Ligase , Humanos , Camundongos , Animais , RNA de Transferência de Serina/genética , Serina-tRNA Ligase/genética , Serina-tRNA Ligase/metabolismo , Aminoacil-tRNA Sintetases/genética , Aminoacilação
8.
Acta Pharm Sin B ; 12(10): 3783-3821, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36213536

RESUMO

Carbohydrates are fundamental molecules involved in nearly all aspects of lives, such as being involved in formating the genetic and energy materials, supporting the structure of organisms, constituting invasion and host defense systems, and forming antibiotics secondary metabolites. The naturally occurring carbohydrates and their derivatives have been extensively studied as therapeutic agents for the treatment of various diseases. During 2000 to 2021, totally 54 carbohydrate-based drugs which contain carbohydrate moities as the major structural units have been approved as drugs or diagnostic agents. Here we provide a comprehensive review on the chemical structures, activities, and clinical trial results of these carbohydrate-based drugs, which are categorized by their indications into antiviral drugs, antibacterial/antiparasitic drugs, anticancer drugs, antidiabetics drugs, cardiovascular drugs, nervous system drugs, and other agents.

9.
Materials (Basel) ; 15(19)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36234366

RESUMO

The organic piezoelectric polymer polyvinylidene fluoride (PVDF) has attracted extensive research because of its excellent flexibility and mechanical energy-harvesting properties. Here, the electrospinning technique was taken to fabricate synthesized fiber membranes of a PVDF/cellulose acetate (CA) composite. The obtained PVDF/CA electrospun fiber membranes (EFMs) were employed to prepare a flexible nanogenerator. XRD and FTIR spectroscopy revealed the enhancement of piezoelectric behavior due to an increase in ß-phase in PVDF/CA EFMs compared with cast films. The PVDF/CA fibers (mass ratio of PVDF to CA = 9:1) showed an output voltage of 7.5 V and a short-circuit current of 2.1 µA under mechanical stress of 2 N and frequency of 1 Hz, which were 2.5 and two times greater than those of the pure PVDF fibers, respectively. By charging a 4.7 µF capacitor for 15 min with the voltage generated by the PVDF/CA EFMs, nine LED lamps could be lit. The work provides an effective approach to enhancing the piezoelectric effects of PVDF for low-power electronic loading of macromolecule polymers.

10.
Materials (Basel) ; 15(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36234172

RESUMO

Silicone rubber is widely used as an insulating material. In this article, silicone rubber samples were prepared by varying the content of crosslinker (2,5-bis(tert-butyl-peroxy)-2,5-dimethylhexane, DBPMH), and the free volume holes in the samples were investigated by means of positron annihilation lifetime spectroscopy (PALS) measurement. The surface chemical structure, surface micromorphology and water diffusion of the samples after corona discharge treatment were studied by FTIR, SEM and EIS measurements, respectively. As the crosslinker weight ratio increased from 0.2 wt.% to 1.5 wt.%, the mean free volume hole size first decreased and then remained unchanged. However, the concentration of free volume holes did not vary as the crosslinker weight ratio increased. SEM morphologies show that surface cracks were produced on samples having high crosslinking levels after corona treatment. The water diffusion coefficient of samples after corona treatment increased from 3.13 × 10-10 cm2 s-1 to 17.68 × 10-10 cm2 s-1 in the initial immersion period, as the crosslinker weight ratio increased from 0.2 wt.% to 3.0 wt.%. The results indicated that deterioration of samples with high crosslinking levels were more serious and water repellency more easily lost. The corona resistance ability of low crosslinking level silicone rubber stems from internal low molecular weight molecules.

11.
Small Sci ; 2(6): 2270012, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35942318

RESUMO

Oridonin Inhibits SARS-CoV-2 Oridonin, a natural product extracted from Rabdosia rubescens, possesses a wide range of pharmacological properties, including anti-inflammatory, anti-cancer, anti-microbial, neuroprotection, immunoregulation, etc. In article number 2100124, Baisen Zhong, Litao Sun, and co-workers demonstrate that Oridonin targets the SARS-CoV-2 3CL protease by covalently binding to cysteine145 in its active pocket to exert an anti-SARS-CoV-2 effect, which provides a novel candidate for the treatment of COVID-19.

12.
Front Cell Dev Biol ; 10: 906885, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35898399

RESUMO

SNAI family members are transcriptional repressors that induce epithelial-mesenchymal transition during biological development. SNAIs both have tumor-promoting and tumor-inhibiting effect. There are key regulatory effects on tumor onset and development, and patient prognosis in infiltrations of immune cell and tumor microenvironmental changes. However, the relationships between SNAIs and immune cell infiltration remain unclear. We comprehensively analyzed the roles of SNAIs in cancer. We used Oncomine and TCGA data to analyze pan-cancer SNAI transcript levels. By analyzing UALCAN data, we found correlations between SNAI transcript levels and breast cancer patient characteristics. Kaplan-Meier plotter analysis revealed that SNAI1 and SNAI2 have a bad prognosis, whereas SNAI3 is the opposite. Analysis using the cBio Cancer Genomics Portal revealed alterations in SNAIs in breast cancer subtypes. Gene Ontology analysis and gene set enrichment analysis were used to analyze differentially expressed genes related to SNAI proteins in breast cancer. We used TIMER to analyze the effects of SNAI transcript levels, mutations, methylation levels, and gene copy number in the infiltration of immune cell. Further, we found the relationships between immune cell infiltration, SNAI expression levels, and patient outcomes. To explore how SNAI proteins affect immune cell, we further studied the correlations between immunomodulator expression, chemokine expression, and SNAI expression. The results showed that SNAI protein levels were correlated with the expression of several immunomodulators and chemokines. Through analysis of PharmacoDB data, we identified antitumor drugs related to SNAI family members and analyzed their IC50 effects on various breast cancer cell lines. In summary, our study revealed that SNAI family members regulate different immune cells infiltrations by gene copy number, mutation, methylation, and expression level. SNAI3 and SNIA1/2 have opposite regulatory effects. They all play a key role in tumor development and immune cell infiltration, and can provide a potential target for drug therapy.

13.
Materials (Basel) ; 15(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35591524

RESUMO

Uniform polyaniline (PANI) nanotubes were synthesized by a self-assembly method under relatively dilute hydrochloric acid (HCl) solution. Scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and UV-Vis-NIR spectroscopy were employed to characterize the morphology and molecular structure of the PANI products. SEM images show that the PANI nanotubes have uniform morphology and form compact coating on the substrate surface. For comparison, aggregated PANI was also synthesized by conventional polymerization method. The performance of the PANI products on carbon steel was studied using eletrochemical measurement and immersion corrosion experiment in 3.5 wt% NaCl aqueous solution. The corrosion potentials of carbon steel samples increase by 0.196 V and 0.060 V after coated with PANI nanotubes and aggregated PANI, respectively, and the corrosion currents density decrease by about 76.32% and 36.64%, respectively. The 6-day immersion experiment showed that the carbon steel samples coated by PANI nanotubes showed more excellent anticorrosion performance, because the more compact coating formed by PANI nanotubes may inhibit the corrosion process between the anodic and cathodic.

14.
Small Sci ; 2(6): 2100124, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35600064

RESUMO

The current COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an enormous threat to public health. The SARS-CoV-2 3C-like protease (3CLpro), which is critical for viral replication and transcription, has been recognized as an ideal drug target. Herein, it is identified that three herbal compounds, Salvianolic acid A (SAA), (-)-Epigallocatechin gallate (EGCG), and Oridonin, directly inhibit the activity of SARS-CoV-2 3CLpro. Further, blocking SARS-CoV-2 infectivity by Oridonin is confirmed in cell-based experiments. By solving the crystal structure of 3CLpro in complex with Oridonin and comparing it to that of other ligands with 3CLpro, it is identified that Oridonin binds at the 3CLpro catalytic site by forming a C-S covalent bond, which is confirmed by mass spectrometry and kinetic study, blocking substrate binding through a nonpeptidomimetic covalent binding mode. Thus, Oridonin is a novel candidate to develop a new antiviral treatment for COVID-19.

15.
J Colloid Interface Sci ; 622: 637-651, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35533479

RESUMO

Nano-semiconductor materials coupled with piezoelectric effect have received extensive attention due to their wide application in catalysis. In this work, few-layered MoSe2 nanosheets were grown vertically on TiO2 nanorods (TNr) to synthesize a direct Z-scheme heterojunction, exhibiting efficient piezocatalytic and piezo-photocatalytic performance. The MoSe2/TNr heterostructure exhibited superior piezoelectric degradation efficiency, successfully removing over 98% of RhB within 360 s under continuous magnetic stirring in dark. Compared with piezocatalysis, the piezo-photocatalytic system possessed higher degradation efficiency and cycle stability. Furthermore, a piezo-photoelectric synergistic effect of nanocomposites was observed by current outputs. Under stirring conditions, the current density of depleted MoSe2/TNr and MoSe2 nanosheets were respectively 6.3 µA/cm2 and 5.5 µA/cm2. When light and stirring were applied, the MoSe2/TNr current density increased twice to 13.2 µA/cm2, while the MoSe2 nanosheets didn't exhibit improvement. Through the direct Z-scheme heterojunction of MoSe2/TNr, photoexcitation and piezoelectric polarization work together to effectively replenish carriers under light irradiation, and then rapidly separate free charges through piezopotential. This work broadens the application prospects of piezocatalysis and piezo-photocatalysis in renewable energy harvesting and water purification.

16.
IEEE Trans Image Process ; 31: 2529-2540, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35275820

RESUMO

The explanation for deep neural networks has drawn extensive attention in the deep learning community over the past few years. In this work, we study the visual saliency, a.k.a. visual explanation, to interpret convolutional neural networks. Compared to iteration based saliency methods, single backward pass based saliency methods benefit from faster speed, and they are widely used in downstream visual tasks. Thus, we focus on single backward pass based methods. However, existing methods in this category struggle to successfully produce fine-grained saliency maps concentrating on specific target classes. That said, producing faithful saliency maps satisfying both target-selectiveness and fine-grainedness using a single backward pass is a challenging problem in the field. To mitigate this problem, we revisit the gradient flow inside the network, and find that the entangled semantics and original weights may disturb the propagation of target-relevant saliency. Inspired by those observations, we propose a novel visual saliency method, termed Target-Selective Gradient Backprop (TSGB), which leverages rectification operations to effectively emphasize target classes and further efficiently propagate the saliency to the image space, thereby generating target-selective and fine-grained saliency maps. The proposed TSGB consists of two components, namely, TSGB-Conv and TSGB-FC, which rectify the gradients for convolutional layers and fully-connected layers, respectively. Extensive qualitative and quantitative experiments on the ImageNet and Pascal VOC datasets show that the proposed method achieves more accurate and reliable results than the other competitive methods. Code is available at https://github.com/123fxdx/CNNvisualizationTSGB.


Assuntos
Atenção , Redes Neurais de Computação , Semântica
17.
Cell Mol Life Sci ; 79(2): 128, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35133502

RESUMO

The evolutionary necessity of aminoacyl-tRNA synthetases being associated into complex is unknown. Human lysyl-tRNA synthetase (LysRS) is one component of the multi-tRNA synthetase complex (MSC), which is not only critical for protein translation but also involved in multiple cellular pathways such as immune response, cell migration, etc. Here, combined with crystallography, CRISPR/Cas9-based genome editing, biochemistry, and cell biology analyses, we show that the structures of LysRSs from metazoan are more dynamic than those from single-celled organisms. Without the presence of MSC scaffold proteins, such as aminoacyl-tRNA synthetase complex-interacting multifunctional protein 2 (AIMP2), human LysRS is free from the MSC. The interaction with AIMP2 stabilizes the closed conformation of LysRS, thereby protects the essential aminoacylation activity under stressed conditions. Deleting AIMP2 from the human embryonic kidney 293 cells leads to retardation in cell growth in nutrient deficient mediums. Together, these results suggest that the evolutionary emergence of the MSC in metazoan might be to protect the aminoacyl-tRNA synthetase components from being modified or recruited for use in other cellular pathways.


Assuntos
Lisina-tRNA Ligase/metabolismo , Proteínas Nucleares/metabolismo , Aminoacilação , Células HEK293 , Humanos , Ligação Proteica , Biossíntese de Proteínas
18.
IEEE Trans Pattern Anal Mach Intell ; 44(9): 4626-4641, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-33856981

RESUMO

This paper generalizes the Attention in Attention (AiA) mechanism, in P. Fang et al., 2019 by employing explicit mapping in reproducing kernel Hilbert spaces to generate attention values of the input feature map. The AiA mechanism models the capacity of building inter-dependencies among the local and global features by the interaction of inner and outer attention modules. Besides a vanilla AiA module, termed linear attention with AiA, two non-linear counterparts, namely, second-order polynomial attention and Gaussian attention, are also proposed to utilize the non-linear properties of the input features explicitly, via the second-order polynomial kernel and Gaussian kernel approximation. The deep convolutional neural network, equipped with the proposed AiA blocks, is referred to as Attention in Attention Network (AiA-Net). The AiA-Net learns to extract a discriminative pedestrian representation, which combines complementary person appearance and corresponding part features. Extensive ablation studies verify the effectiveness of the AiA mechanism and the use of non-linear features hidden in the feature map for attention design. Furthermore, our approach outperforms current state-of-the-art by a considerable margin across a number of benchmarks. In addition, state-of-the-art performance is also achieved in the video person retrieval task with the assistance of the proposed AiA blocks.


Assuntos
Algoritmos , Pedestres , Humanos , Redes Neurais de Computação
19.
J Colloid Interface Sci ; 609: 657-666, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34838313

RESUMO

Piezocatalysis, driven by mechanical energy and piezoelectric effect, is of great potential in addressing the environmental issues. In this work, a piezoelectric catalyst was fabricated by growing few-layer MoS2 nanosheets onto CuS, for the piezocatalytic degradation of Rhodamine B (RhB), methylene blue (MB) and hexavalent chromium (Cr (VI)). The excellent removal efficiency of Cr (VI) and RhB can be reached 100% within 180 s, through the piezocatalysis of CuS/MoS2-0.6 driven by mechanical stirring in the dark. Impressively, the piezoelectric current of CuS/MoS2-0.6 is 48 and 35.7 times higher than that of pure CuS and MoS2, respectively. The significantly enhanced piezocatalytic performance can be ascribed to the formation of CuS/MoS2 heterojunction and the piezoelectric field generated by MoS2 nanosheets, which promotes the efficient separation of electrons and holes. This study provides insights into strategies to improve catalytic performance through utilizing mechanical energy and opens a new horizon for environmental remediation.

20.
Biochem Biophys Res Commun ; 569: 41-46, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34225079

RESUMO

The transcription factor for immunoglobulin heavy-chain enhancer 3 (TFE3) is a member of the microphthalmia (MiT/TFE) transcription factor family. Dysregulation of TFE3 due to chromosomal abnormalities is associated with a subset of human renal cell carcinoma. Little structural information of this key transcription factor has been reported. In this study, we determined the crystal structure of the helix-loop-helix leucine zipper (HLH-Lz) domain of human TFE3 to a resolution of 2.6 Å. The HLH-Lz domain is critical for the dimerization and function of TFE3. Our structure showed that the conserved HLH region formed a four-helix bundle structure with a predominantly hydrophobic core, and the leucine zipper region contributed to the function of TFE3 by promoting dimer interaction and providing partner selectivity. Together, our results elucidated the dimerization mechanism of this important transcription factor, providing the structural basis for the development of inhibiting strategies for treating TFE3 dysregulated diseases.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/química , Sequências Hélice-Alça-Hélice , Zíper de Leucina , Conformação Proteica , Multimerização Proteica , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Cristalografia por Raios X , Regulação da Expressão Gênica , Células HeLa , Humanos , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...