Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 533
Filtrar
1.
J Econ Entomol ; 2020 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-32623464

RESUMO

Bacillus thuringiensis Cry proteins have been widely used over the past decades for many different insect pests, which are safe for users and the environment. The coleopteran-specific Cry3Aa toxin from B. thuringiensis exhibits toxicity to the larvae of Monochamus alternatus. Receptors play a key role in the mechanisms underlying the toxic action of Cry. However, the binding receptor for Cry3Aa has yet to be identified in the midgut of M. alternatus larvae. Therefore, the aim of this study was to identify the receptor for Cry3Aa toxin in the brush border membrane vesicles (BBMVs) of M. alternatus larvae. Our results indicate that the Cry3Aa toxin binds to the BBMVs (Kd = 247 nM) of M. alternatus via a 107 kDa aminopeptidase N (APN) (Kd = 57 nM). In silico analysis of the APN protein predicted that an 18 amino acid sequence in the N-terminal acted as a signal peptide, and that the Asn residue, located at position 918 in the C-terminus is an anchored site for glycosyl phosphatidyl inositol. Further analysis showed that M. alternatus APN exhibits 75% homology to the APN from Anoplophora glabripenis. Our work, therefore, confirmed that APN, which is localized in the BBMVs in the midgut of M. alternatus larvae, acts as a binding protein for Cry3Aa toxins.

2.
Gene Ther ; 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32632266

RESUMO

Cardiac hypertrophy is imposed much pressure on heart and threatening our live. Previous study suggested that dysregulation of Celf1 is largely connecting to neonatal cardiac dysfunction. Hence, we aimed to explore the precise function and probable regulatory mechanism upstream of Celf1in cardiac hypertrophy. Here, Ang-II treatment was implemented to stimulate hypertrophic phenotypes inH9C2 and MCM cells. Immunofluorescence assay was conducted to measure the surface area of cardiomyocytes. And qRT-PCR assay was conducted to investigate gene expression. Moreover, western blot assay was conducted to probe the protein levels. Results uncovered that Celf1 expression was increased dependent on elevated Ang-II concentration, and that inhibited Celf1 could relieve the Ang-II-caused cardiac hypertrophy. Significantly, Celf1was found to be targeted by miR-129-5p but then released via the sponging role of circ-Jarid2. Furthermore, circ-Jarid2 was found to promote cardiac hypertrophy, whereas miR-129-5p played suppressing parts in hypertrophic cardiomyocytes. Moreover, we verified circ-Jarid2 contributed to cardiac hypertrophy via miR-129-5p/Celf1 axis both in vitro and in vivo. In conclusion, circ-Jarid2/miR-129-5p/Celf1 axis aggravates cardiac hypertrophy, which provides new ideas for developing treatment strategies for patients with cardiac hypertrophy.

3.
Huan Jing Ke Xue ; 41(3): 1025-1035, 2020 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-32608602

RESUMO

A total of 70 total suspended particulate (TSP) samples were collected from December 2017 to February 2018 and June to August 2018 in Shengsi Islet, East China Sea. In this study, the mass concentrations of water-soluble ions in the TSP (including Na+, K+, NH4+, Mg2+, Ca2+, Cl-, SO42-, NO3-, and MSA) samplers were determined by ion chromatography. The chemical characteristics, seasonal differences, and main sources of water-soluble ions in this background aerosol site were investigated by a multiple-technique analysis combining a HYSPLIT model, correlation analysis of water-soluble ions, and primary component analysis. The results showed that the average mass concentrations of TSP and the main water-soluble inorganic ions (WSIIs) were both high in winter and low in summer; the average mass concentration of total WSIIs in winter was (26.5±16.3) µg·m-3, and in summer was (8.8±3.8) µg·m-3. Secondary inorganic ions (NO3-, SO42-, and NH4+) are the most important ionic components in TSP, which accounted for 86.2% and 74.9% of TWSIIs in winter and summer, respectively. Meanwhile, the study site was affected by seasonal temperature change, long-distance transmission, and summer biogenic sulfates. The mass concentration of nitrate was highest in winter, and the mass concentration of sulfate was highest in summer. Anthropogenic sources were the main source of nss-SO42- in atmospheric aerosols. The analysis of sulfate sources showed that contributions of biogenic sulfates to nss-SO42- were 28.1% and 5.9% in summer and winter, respectively. The results of principal component analysis indicated that the main sources of aerosol chemical composition were marine and anthropogenic sources in summer and winter, respectively. In winter, Cl- showed a certain degree of enrichment due to the influence of human activities, and the average value of the enrichment factor was 38.5%.

4.
Artigo em Inglês | MEDLINE | ID: mdl-32609042

RESUMO

Background: Obstructive sleep apnea (OSA) is a serious threat to individual health. Diagnosis of OSA is mainly polysomnography (PSG). However, PSG monitoring is costly and time-consuming. At present, increasing studies are exploring new diagnostic methods for OSA. This study aimed to explore the diagnostic role of Sestrin2 in OSA. Materials and Methods: Sixty-four subjects were recruited in this study. The concentration of plasma Sestrin2 of all subjects were measured and compared. Spearman's correlation analysis was used to investigate the correlation between plasma Sestrin2 concentration and other factors. Receiver-operating characteristic (ROC) curve was used to investigate the role of Sestrin2 in the diagnosis of OSA, moderate-severe and severe OSA. Results: Subjects were divided into OSA group (n = 38) and control (n = 26). Levels of Plasma Sestrin2 were significantly higher in OSA patients than in controls. Sestrin2 was positively correlated with oxygen reduction index and negatively correlated with mean oxygen saturation and lowest oxygen saturation. The area under ROC curve (AUC) of Sestrin2 for OSA diagnosis was 0.740 [95% confidence interval (CI), 0.615-0.842], the cutoff value was 1.86 ng/mL, and the sensitivity and specificity were 81.58% and 61.54%, respectively. The AUC of Sestrin2 for the diagnosis of severe OSA was 0.801 (95% CI, 0.682-0.890), and the cutoff value was 5.21 ng/mL exhibiting the sensitivity and specificity of 61.90% and 90.70%, respectively. Conclusion: Setrin2 is a marker for OSA and may be helpful in the diagnosis of OSA.

5.
Plant Physiol ; 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32513835

RESUMO

MicroRNA399 (miR399) regulates phosphate homeostasis in plants by downregulating the expression of PHOSPHATE2 (PHO2, or UBC24 encoding the ubiquitin-conjugating E2 enzyme) . We previously identified CsmiR399a.1 in a small RNA sequencing (sRNA-seq) screen of a male-sterile somatic cytoplasmic hybrid (or cybrid) of pummelo (Citrus grandis). Here, we report that miR399 affects reproductive development and male fertility in citrus. Downregulation of CsmiR399a.1 using a short tandem target mimic (STTM) led to abnormal floral development, inhibition of anther dehiscence and decreased pollen fertility. When grown in inorganic phosphate (Pi)-sufficient conditions, CsmiR399a.1-STTM plants had lower total phosphorus content in their leaves than the wild type (WT) and showed typical symptoms of Pi deficiency. In CsmiR399a.1-STTM plants, the expression of genes involved in starch metabolism and Pi-homeostasis was significantly different than in the WT. Thus, we conclude that miR399-STTM mimicked Pi deficiency, disturbed starch metabolism, and was responsible for pollen grain collapse in the transgenic lines. We identified CsUBC24, a citrus homolog of Arabidopsis thaliana AtUBC24 (PHO2), as a target of CsmiR399a.1 that physically interacts with the floral development regulators SEPALLATA family (CsSEP1.1, CsSEP1.2, CsSEP3), and the anther dehiscence regulator INDUCER OF CBF EXPRESSION 1 (CsICE1). We hypothesize that CsUBC24 downregulates the CsSEPs, which disrupts the floral meristem identity regulatory network and leads to developmental abnormalities in flowers. By interacting with CsICE1, CsUBC24 disturbs stomate function on the anther surface, which inhibits anther dehiscence. These findings indicate that a miR399-based mechanism influences both reproductive development and male fertility in citrus.

6.
Artigo em Inglês | MEDLINE | ID: mdl-32539329

RESUMO

Tough adhesive hydrogels that can tightly bond to wet tissue/polymer/ceramic/metal surfaces have great potentials in various fields. However, conventional adhesive hydrogels usually show short-term and nonreversible adhesion ability, as the water component in a hydrogel readily transforms to vapor or ice in response to fluctuation of environment temperature, hindering their applications in extreme conditions such as in freezing Arctic and roasting Africa. For the first time, urushiol (UH), a natural catechol derivative with a long alkyl side chain, is used as a starting material to copolymerize with acrylamide for fabricating adhesive hydrogels, which contain hydrophobic/hydrophilic moieties, antifreezing agent, and adhesive catechol groups. The antifreezer/moisturizer glycerol/water binary solvent dispersed in the hydrogel endows it with antifreezing/antiheating property. The hydrophobic association and π-π interaction from UH moieties of the copolymer greatly improve its mechanical strength (tensile stress: ∼0.12 MPa with strain of ∼1100%, toughness: ∼72 kJ/m3, compression stress: ∼6.72 MPa at strain of 90%). The hydrogel can strongly adhere to various dry/wet biological/polymeric/ceramic/metallic substrates at temperatures ranging from -45 to 50 °C. Under ambient conditions, its adhesion force to porcine skin, glass, and tinplate may reach up to 160, 425, and 275 N/m, respectively. Even stored at -45 or 50 °C for 30 d, the hydrogel still maintains good flexibility and robust adhesion force. It also shows repeatable underwater adhesion to biological tissue, glass, ceramic, plastic, and rubber. This novel antifreezing/antiheating adhesive hydrogel may be applied in extremely cold or hot environments and in underwater conditions.

7.
Ying Yong Sheng Tai Xue Bao ; 31(2): 449-458, 2020 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-32476337

RESUMO

Improper fertilization style is one of the main reasons for low water and fertilizer use efficiency of double-ridge-furrow sowing with the whole plastic film mulching in maize production in the semi-arid area. Understanding the effects of reduction, postponing, and organic fertilizer substitution of nitrogen fertilizer on water and fertilizer use efficiency and yield of maize can provide theore-tical basis for effective management of water and fertilizer in maize production. Based on a 4-year field experiment with three treatments: all fertilizers as base fertilizer under double-ridge-furrow sowing with the whole plastic film mulching (CK), nitrogen fertilizer reduced by 15% and topdres-sing in tasseling stage (RN), 30% of the chemical fertilizer replaced by organic fertilizer and topdressing in tasseling stage (RNM), we measured water consumption characteristics, growth and development, water and fertilizer utilization efficiency of maize. The results showed that fertilization pattern significantly affected water and fertilizer utilization efficiency and yield of maize, which was dependent on annual rainfall. In dry and normal rainfall year, water consumption in pre-flowering stage of RN was decreased by 16.1%-18.8% and that in post-flowering stage was increased by 18.0%-22.2%, while water consumption in pre-flowering and post-flowering stages of RNM did not differ from that in CK. In wet year, water consumption in pre-flowering stage of RN and RNM was decreased by 16.7% and 6.3%, while that in post-flowering stage was increased by 11.4% and 29.7%, respectively. Compared with CK, RN significantly increased the relative content of chlorophyll (SPAD) of maize leaves after topdressing, the biomass in post-flowering stage was increased by 15.6%-44.9%, the ear length, the number and weight of grains per spike and the 100-grain weight were increased significantly, yield was increased by 9.8%-17.0%, and water use efficiency (WUE) was increased by 6.3%-21.4%, with the partial productivities of fertilizer (PEPT), N (PEPTN), P (PEPTP) and K (PEPTK) were all increased significantly. In conclusion, RN could improve water consumption and the SPAD value in post-flowering stage of maize in different precipitation years, increase post-flowering biomass, and optimize the ear character, obviously improve yield, water and fertilizer use efficiency. It was a effective fertilizer management mode with high-efficiency utilization of water and fertilizer under double-ridge-furrow sowing with the whole plastic film mulching in maize in the semi-arid area.


Assuntos
Fertilizantes , Zea mays , Agricultura , China , Nitrogênio , Plásticos , Solo , Água
8.
Ying Yong Sheng Tai Xue Bao ; 31(3): 899-908, 2020 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-32537986

RESUMO

Understanding population quality and nitrogen utilization characteristics of direct seeding rice under water-nitrogen interaction could provide theoretical and practical basis for high yield and ample production of direct seeding rice. Hybrid rice F You 498 was used as the material. Three irrigation methods were set in this study: flooding irrigation (W1), dry-wet alternate irrigation (W2) and drying irrigation (W3), with different ratio of base fertilizer: tiller fertilizer: panicle fertilizer at 5:3:2 (N1), 3:3:4 (N2), 3:1:6 (N3), respectively. No nitrogen application (N0) was set as the control. We investigated the effects of water-nitrogen interaction on population quality and nitrogen utilization characteristics of direct seeding rice, with the aim to clarify the relationship between population quality construction, nitrogen utilization characteristics and yield of direct seeding rice. The results showed that irrigation and N rate significantly interacted to affect dry matter accumulation, rice harvest index, heading high-efficiency leaf (the upper three leaves) dry weight, light transmittance rate at maturity stage, total nitrogen accumulation (TNA), apparent nitrogen use efficiency (ANE), nitrogen partial factor productivity (NPFP), nitrogen physiology efficiency, and rice yield. Taking population quality, yield and N fertilizer utilization characteristics into consideration, suitable panicle N-fertilizer under each irrigation mode was 20%-40% (N1-N2). Panicle N-fertilizer reached 60% (N3) and W3 treatment would significantly reduce population quality, yield, nitrogen agronomy efficiency (NAE), NPFP of direct seeding rice. Yield and nitrogen utilization characteristics of direct seeding rice were significantly correlated with effective panicles, dry matter accumulation at maturity stage, other leaf (except the upper three leaves) dry weight reduction, total leaf dry weight reduction, and middle part and basel part light-receiving rate under water-nitrogen interaction. The dry-wet alternative (W2) treatment could increase the rate of production til-lers, dry matter accumulation, rice harvest index, TNA, NAE and rice yield. W2 combined with N2 could improve population quality of direct seeding rice and realized the coordination and unification of high yield and efficient utilization of nitrogen, which is the best combination in this experiment.


Assuntos
Fertilizantes , Oryza , Biomassa , Nitrogênio , Água
9.
Tree Physiol ; 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32589747

RESUMO

Alternative splicing (AS) is an important post-transcriptional process to enhance proteome diversity in eukaryotic organisms. In plants, numerous reports have primarily focused on AS analysis in model plant species or herbaceous plants, leading to a notable lack of research on AS in woody plants. More importantly, emerging evidence indicates that many important traits, including wood formation and stress resistance, in woody plants are controlled by AS. In this review article, we summarize the current progress of all kinds of AS studies in different tree species at various stages of development and in response to various stresses, revealing the significant role played by AS in woody plants, as well as the similar properties and differential regulation within their herbaceous counterparts. Furthermore, we propose several potential strategies to facilitate the functional characterization of splicing factors in woody plants and evaluate a general pipeline for the systematic characterization of splicing isoforms in a complex AS regulatory network. The utilization of genetic studies and high-throughput omics integration approaches to analyze AS genes and splicing factors is likely to further advance our understanding of AS modulation in woody plants.

10.
J Inorg Biochem ; 210: 111131, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32563103

RESUMO

In this article, two Keggin-type polyoxometalates [Co(L)2]3[PMo12O40] (1) and [Co(L)2]3[PW12O40] (2) (HL = 2-acetylpyrazine thiosemicarbazone) were prepared and fully characterized. The compounds are stable in aqueous solution with different pH values and show superior antibacterial activity against Escherichia coli (E. coli: minimal inhibitory concentration (MIC) = 0.00375, 0.12 µg/mL), Agrobacterium tumefaciens (A. tumefaciens: MIC = 0.06, 0.12 µg/mL), Bacillus subtilis (B. subtilis: MIC = 0.015, 0.06 µg/mL) and especially for Staphylococcus aureus (S. aureus: MIC = 0.00048, 0.015 µg/mL) for 1 and 2, respectively. The time kill studies showed the entire killing of specific bacteria during 4 to 8 h. In addition, the possible antibacterial mechanism of compound 1 was explored systematically. The experimental results proved that cell wall/membrane damage, leakage of protein, inhibition of respiratory chain dehydrogenases activity, enhancement of intracellular reactive oxygen species (ROS) and depletion of glutathione (GSH) were the potential causes of bacteria death.

11.
J Cell Physiol ; 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32557673

RESUMO

Idiopathic pulmonary fibrosis (IPF), a progressive and fatal lung disease, usually leads to an irreversible distortion of the pulmonary structure. The functional roles of bone marrow-derived mesenchymal stem cells (BMSC)-secreted extracellular vesicles (EVs) in fibroblasts have been implicated, yet their actions in the treatment of IPF are not fully understood. This study investigated the roles of BMSC-derived EVs expressing miR-29b-3p in fibroblasts in IPF treatment. EVs derived from BMSCs were successfully isolated and could be internalized by pulmonary fibroblasts, and Cell Counting Kit-8 (CCK-8) and Transwell assay results identified that EVs inhibited the activation of fibroblast in IPF. miR-29b-3p, frizzled 6 (FZD6), α-skeletal muscle actin (α-SMA), and Collagen I expressions were examined, which revealed that miR-29b-3p was poorly expressed and FZD6, α-SMA, and Collagen I were overexpressed in pulmonary tissues. Dual-luciferase reporter assay results demonstrated that miR-29b-3p could inversely target FZD6 expression. The gain- and loss-of-function assays were conducted to determine regulatory effects of FZD6 and miR-29b-3p on IPF. CCK-8 and Transwell assays results displayed that BMSCs-derived EVs overexpressing miR-29b-3p contributed to inhibited pulmonary interstitial fibroblast proliferation, migration, invasion, and differentiation. Furthermore, the effects of BMSCs-derived EVs overexpressing miR-29b-3p on IPF progression were assessed in vivo, which confirmed the repressive effects of BMSCs-derived EVs overexpressing miR-29b-3p on IPF progression. Collectively, BMSCs-derived EVs overexpressing miR-29b-3p relieve IPF through FZD6.

12.
Ying Yong Sheng Tai Xue Bao ; 31(4): 1146-1154, 2020 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-32530189

RESUMO

Based on a 3-year field experiment (2015-2017) with two treatments, annual whole-film mulching (PM) and uncovered (CK), we analyzed the relationship between soil temperature, moisture, and soil hydrothermal movement in semi-arid area. The results showed that freezing-thawing processes under both PM and CK were one-way freezing and two-way melting. Compared with CK, the freezing period in PM treatment was lagged, freezing rate was slowed down, freezing depth was 20 cm shallower, but melting rate was faster, and melting period was shortened by 6-7 days. In freezing period, soil temperature gradients of PM and CK were positive, with heat being transmitted toward top soil layer, and the conduction strength in PM treatment was greater than CK. During the melting period, soil temperature gradient of PM was also positive, with heat being transmitted toward upper soil layer, and that of CK was conversed. Soil water in PM treatment transported to upper soil layer during freezing-thawing period, but it appeared a "down-up-down" movement mode under CK in freezing period, "up-down" in thawing period. There was positively correlation between temperature and moisture gradient in the freezing period under both PM and CK treatments, with closer correlation in PM than CK. During melting period, soil temperature and moisture gradient was positively correlated in PM treatment with soil heat and moisture moved upward synchronously, while that in CK was negatively correlated with soil heat and moisture simultaneously moved to the lower layer soil. Driven by soil temperature and moisture gradient, soil temperature in 0-10 cm, 10-20 cm and 20-30 cm layers increased by 1.13-1.34 ℃, 0.96-1.24 ℃ and 0.89-1.32 ℃, while average soil water content increased by 3.4%-5.6%, 1.4%-2.2% and 6.7%-7.8%, respectively in PM treatment before sowing. Our results indicated that PM could provide water and heat protection for re-greening of winter crop and sowing, emergence and seedling of spring-sown crops in semi-arid areas.


Assuntos
Solo , Zea mays , Agricultura , China , Congelamento , Temperatura , Água
13.
J Pharmacol Exp Ther ; 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32571958

RESUMO

Chemoresistance of hepatocellular carcinoma is one of the most serious problems, which directly hinders the effect of chemotherapy agents. We previously reported that CD13 inhibition can enhance the cytotoxic efficacy of chemotherapy agents. In the present study, we utilizes liver cancer cell to explore molecular mechanism accounting for the relationship of CD13 and chemoresistance. We demonstrate that CD13 over-expression activates the P38/Hsp27/CREB signaling pathway to limit the efficacy of cytotoxic agents. Moreover, blockade of P38 or CREB sensitizes HCC cells to 5FU. Then, we discover that CREB binds onto ATG7 promoter to induce autophagy thereby promotes HCC cells chemoresistance. CD13 inhibition also down-regulated the expression of ATG7, autophagy, and the growth of tumor cells in vivo. Overall, combination CD13 inhibitor and chemotherpay agents may be a potential therapeutic strategy for overcoming drug resistance in HCC. SIGNIFICANCE STATEMENT: Our study demonstrates that CD13 promotes HCC cells chemoresistance via P38/Hsp27/CREB pathway. CREB regulates ATG7 transcription and expression to induce autophagy. Collectively, these results suggest that CD13 might serve as a potential target for overcoming HCC resistance.

14.
World J Surg Oncol ; 18(1): 85, 2020 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-32359372

RESUMO

BACKGROUND: Peritoneal leiomyomatosis disseminate (LPD) is a rare disease characterized by widespread dissemination of leiomyomas nodules throughout the peritoneal and omental surfaces. Reports of pregnancy with LPD are even rarer. Therefore, there is no clear consensus on the treatment of LPD on pregnancy, and the pathogenesis is still unclear. CASE PRESENTATION: We reported a case of LPD patient who developed during pregnancy. The patient underwent a cesarean section at 32 weeks of gestation while removing all visible tumors, and no LPD lesions were seen in the subsequent cesarean section at full term. NGS of LPD lesions detected 4 mutations with focal high-level amplifications of CDK4 (cyclin-dependent kinases 4), NBN (Nibrin), DAXX (death domain associated protein), and MYC (myelocytomatosis oncogene). Immunohistochemistry staining analysis among benign leiomyoma, LPD, and leiomyosarcoma verified that LPD was an unusual intermediate between benign and malignant uterine smooth muscle tumors. Besides, LPD is a hormonal-dependent leiomyoma. After a detailed literature search, we summarized the detailed clinical features and follow-up information of patients with LPD during pregnancy. CONCLUSIONS: This is the first reported LPD case of successful term pregnancy without recurrence, following resection of all visible lesions in a prior pregnancy. LPD is an unusual intermediate between benign and malignant uterine smooth muscle tumors.

15.
Br J Pharmacol ; 177(14): 3147-3161, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32368792

RESUMO

As of April 9, 2020, a novel coronavirus (SARS-CoV-2) had caused 89,931 deaths and 1,503,900 confirmed cases worldwide, which indicates an increasingly severe and uncontrollable situation. Initially, little was known about the virus. As research continues, we now know the genome structure, epidemiological and clinical characteristics, and pathogenic mechanisms of SARS-CoV-2. Based on this knowledge, potential targets involved in the processes of virus pathogenesis need to be identified, and the discovery or development of drugs based on these potential targets is the most pressing need. Here, we have summarized the potential therapeutic targets involved in virus pathogenesis and discuss the advances, possibilities, and significance of drugs based on these targets for treating SARS-CoV-2. This review will facilitate the identification of potential targets and provide clues for drug development that can be translated into clinical applications for combating SARS-CoV-2.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/tratamento farmacológico , Pneumonia Viral/tratamento farmacológico , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/uso terapêutico , Alanina/análogos & derivados , Alanina/uso terapêutico , Bloqueadores do Receptor Tipo 1 de Angiotensina II/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Antivirais/uso terapêutico , Basigina/metabolismo , Betacoronavirus/metabolismo , Betacoronavirus/patogenicidade , Infecções por Coronavirus/complicações , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/terapia , Síndrome da Liberação de Citocina/tratamento farmacológico , Síndrome da Liberação de Citocina/etiologia , Síndrome da Liberação de Citocina/imunologia , Gabexato/análogos & derivados , Gabexato/uso terapêutico , Genoma Viral , Guanidinas/uso terapêutico , Humanos , Imunização Passiva , Imunossupressores/uso terapêutico , Medicina Tradicional Chinesa , Inibidores da Síntese de Ácido Nucleico/uso terapêutico , Pandemias , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/complicações , Pneumonia Viral/imunologia , Pneumonia Viral/metabolismo , Inibidores de Proteases/uso terapêutico , RNA Replicase/metabolismo , Serina Endopeptidases/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Vacinas Virais , Internalização do Vírus , Replicação Viral
16.
Mater Sci Eng C Mater Biol Appl ; 109: 110649, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32228936

RESUMO

Adhesive hydrogels for wet and dynamic tissues are important for biomedical applications in order to withstand cyclic loading such as in the case of hemorrhaging control on the curved skins and heart tissues. However, the fabrication of hydrogels with strong mechanical properties, high adhesion strength, and hemostatic efficiency remains a big challenge. Inspired by the great adhesive behavior of mussels and Arion subfuscus, novel adhesive and hemostatic polyacrylamide-tannic acid-kaolin (PAAm-TA-KA) hydrogels were reported in this work. The hydrogels displayed high strength and toughness due to their physical and chemical crosslinking structures. The abundant catechol groups on tannic acid endow the hydrogels with strong and durable adhesion strength of up to 500 kPa on porcine skin. When applied onto human skin, the hydrogels could be easily peeled off without leaving any remains and causing any damages. The kaolin nanoparticles incorporated in the PAAm-TA-KA hydrogels not only served as a physical crosslinking agent, but an activator of the blood clotting factor FXII for accelerating the formation of thrombus. The strong tissue adhesion and blood coagulant potential of the PAAm-TA-KA hydrogels imparted them high hemostatic efficiency. The free-standing, adhesive, tough, cytocompatible, and hemostatic hydrogels are highly promising for traumatic bleeding control materials.

17.
Zootaxa ; 4732(2): zootaxa.4732.2.11, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32230268

RESUMO

Dascillus Latreille, 1797 (Coleoptera: Dascillidae) currently contains about 40 species, of which 32 have been reported from China (Jin et al. 2013, 2018; Hájek 2016; Terzani et al. 2017; Wang et al. 2019). The Baotianman National Nature Reserve of Henan (33°20'-33°36'N, 111°47'-112°04'E) which is one of the "world biosphere reserves" recognized by United Nations Educational, Scientific and Cultural Organization for their high ecosystem and species diversity (Zhu et al. 2002). While examining specimens collected from the survey of the Baotianman National Nature Reserve in 2017, conducted by the Hunan Agricultural University (Changsha, China), a new species of Dascillus was identified and is described in this paper.


Assuntos
Besouros , Distribuição Animal , Animais , China , Ecossistema , Universidades
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 237: 118362, 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32335497

RESUMO

Surface-enhanced Raman scattering (SERS) is a promising technique to investigate the plasmon-driven catalytic reaction, in which the Raman signal originates from the electromagnetic (EM)enhancement mechanism and the chemical enhancement (CE) mechanism. Here, we designed and synthesized a novel SERS substrate based on SiO2 wrapped Ag nanoparticles (Ag@SiO2 core-shell nanoparticles substrate, Ag@SiO2 CSNS). Meanwhile, the SERS substrate based on Ag nanoparticles (Ag NS) also was prepared for comparison. Then, plasmon-driven catalytic reaction of 4-nitrobenzenethiol (4-NBT) to p,p'-dimercaptoazobenzene (DMAB) were systematically investigated on Ag and Ag@SiO2, respectively. The result revealed that, the Fermi level of Ag@SiO2 CSNS is lower than Ag NS, and the catalytic reaction greatly hindered by the Ag@SiO2 CSNS under the same excitation laser wavelength. With the same condition excitation laser, Raman signal enhancement effects are different when applying Ag NS and Ag@SiO2 CSNS, which could be attributed to that the inert SiO2 shell eliminates CE mechanism of the Raman signal. These results provide a simple strategy to figure out the mechanism of the catalytic reaction based on Surface-enhanced Raman scattering.

19.
Artigo em Inglês | MEDLINE | ID: mdl-32333453

RESUMO

A freestanding 3D graphdiyne-cobalt nitride (GDY/Co2 N) with a highly active and selective interface is fabricated for the electrochemical nitrogen reduction reaction (ECNRR). Density function theory calculations reveal that the interface-bonded GDY contributes an unique p-electronic character to optimally modify the Co-N compound surface bonding, which generates as-observed superior electronic activity for NRR catalysis at the interface region. Experimentally, at atmospheric pressure and room temperature, the electrocatalyst creates a new record of ammonia yield rate (Y NH 3 ) and Faradaic efficiency (FE) of 219.72 µg h-1 mgcat. -1 and 58.60 %, respectively, in acidic conditions, higher than reported electrocatalysts. Such a catalyst is promising to generate new concepts, new knowledge, and new phenomena in electrocatalytic research, driving rapid development in the field of electrocatalysis.

20.
J Occup Environ Med ; 2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32324699

RESUMO

OBJECTIVE: This study investigates the mechanisms of benzene hematotoxicity. METHODS: We used microarray to detect expression profiles of lncRNAs and mRNAs in peripheral lymphocytes from chronic benzene poisoning, acute myelocytic leukemia and healthy controls. The lncRNAs and mRNAs were validated using RT-qPCR. Cytokinesis-block micronucleus assay was used to analyze chromosomal aberration. RESULTS: We found 173 upregulated and 258 downregulated lncRNAs, and 695 upregulated and 804 downregulated mRNAs. The lncRNA CUST_40243 and mRNA PDGFC and CDKN1A associated with chronic benzene poisoning. Relevant inflammatory response, hematopoietic cell lineage and cell cycle may be important pathways for the sifted lncRNAs and mRNAs. Furthermore, micronuclei frequency was significantly higher in off-post chronic benzene poisoning patients. CONCLUSIONS: Chromosomal aberration induced by benzene exposure is irreversible. The lncRNA CUST_40243 and mRNA PDGFC and CDKN1A are related to chronic benzene poisoning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA