Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 8(3)2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32168962

RESUMO

This study aims to investigate the effects of exogenous catalase (CAT), an antioxidative enzyme from microbial cultures, on intestinal development and microbiota in weaned piglets. Seventy-two weaned piglets were allotted to two groups and fed a basal diet or a basal diet containing 2.0 g/kg exogenous CAT. Results showed that exogenous CAT increased (p < 0.05) jejunal villus height/crypt depth ratio and intestinal factors (diamine oxidase and transforming growth factor-α) concentration. Moreover, dietary CAT supplementation enhanced the antioxidative capacity, and decreased the concentration of pro-inflammatory cytokine in the jejunum mucosa. Exogenous CAT did not affect the concentration of short-chain fatty acids, but decreased the pH value in colonic digesta (p < 0.05). Interestingly, the relative abundance of Bifidobacterium and Dialister were increased (p < 0.05), while Streptococcus and Escherichia-Shigella were decreased (p < 0.05) in colonic digesta by exogenous CAT. Accordingly, decreased (p < 0.05) predicted functions related to aerobic respiration were observed in the piglets fed the CAT diet. Our study suggests a synergic response of intestinal development and microbiota to the exogenous CAT, and provides support for the application of CAT purified from microbial cultures in the feed industry.

2.
J Anim Sci ; 98(3)2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32152634

RESUMO

Two experiments were conducted to investigate the effects of exogenous catalase (CAT) in the diet of weaned piglets on growth performance, oxidative capacity, and hepatic apoptosis after challenge with lipopolysaccharide (LPS). In experiment 1, 72 weaned piglets [Duroc × Landrace × Yorkshire, 6.90 ± 0.01 kg body weight (BW), 21 d of age] were randomly assigned to be fed either a basal diet (CON group) or a basal diet supplemented with 2,000 mg/kg CAT (CAT group; dietary CAT activity, 120 U/kg) for 35 d. Blood samples were collected on day 21 and day 35. At the end of this experiment, 12 pigs were selected from each of the CON and CAT groups, and six pigs were injected with LPS (50 µg/kg BW), while the remaining six pigs were injected with an equal amount of sterile saline, resulting in a 2 × 2 factorial arrangement of treatments (experiment 2). Blood samples and rectal temperature data were collected 0 and 4 h after challenge, and liver samples were obtained after evisceration. The gain-to-feed ratio was higher (P < 0.05) in piglets in the CAT group than in those in the CON group from day 1 to 35. Catalase and total superoxide dismutase (T-SOD) activities were higher (P < 0.05), whereas malondialdehyde (MDA) concentrations were lower (P < 0.05), in piglets in the CAT group than in those in the CON group at day 35. During challenge, rectal temperature and liver MDA and H2O2 concentrations increased significantly (P < 0.05), whereas plasma CAT and glutathione peroxidase (GSH-Px) activities and liver CAT activity decreased markedly (P < 0.05), in LPS-challenged piglets 4 h post-challenge. Increased CAT activity and decreased MDA concentration were observed in the plasma and liver of piglets in the CAT group 4 h post-challenge (P < 0.05). Dietary CAT supplementation markedly suppressed the LPS-induced decrease in plasma GSH-Px activity and liver CAT activity to levels observed in the CON group (P < 0.05) as well as significantly decreasing the concentration and mRNA expression of caspase-3 and caspase-9 (P < 0.05). LPS-induced liver injury was also attenuated by dietary CAT supplementation, as demonstrated by a decrease in liver caspase-3 mRNA expression (P < 0.05). Overall, dietary supplementation with 2,000 mg/kg exogenous CAT (dietary CAT activity, 120 U/kg) improves growth performance and has a beneficial effect on antioxidant capacity in weaned piglets; alleviates oxidative stress and reduces liver damage by suppressing hepatic apoptosis in LPS-challenged piglets.

3.
Sci Rep ; 10(1): 3210, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32081946

RESUMO

Lysozyme (LZM) is a natural anti-bacterial protein that is found in the saliva, tears and milk of all mammals including humans. Its anti-bacterial properties result from the ability to cleave bacterial cell walls, causing bacterial death. The current study was conducted to investigate the effects of dietary LZM on fecal microbial composition and variation in metabolites in sow. The addition of LZM decreased the fecal short-chain fatty acids (SCFAs). Zonulin and endotoxin in the serum, and feces, were decreased with lysozyme supplementation. Furthermore, fecal concentrations of lipocalin-2 and the pro-inflammatory cytokine TNF-α were also decreased while the anti-inflammatory cytokine IL-10 was increased by lysozyme supplementation. 16S rRNA gene sequencing of the V3-V4 region suggested that fecal microbial levels changed at different taxonomic levels with the addition of LZM. Representative changes included the reduction of diversity between sows, decreased Bacteroidetes, Actinobacteria, Tenericutes and Spirochaetes during lactation as well as an increase in Lactobacillus. These findings suggest that dietary lysozyme supplementation from late gestation to lactation promote microbial changes, which would potentially be the mechanisms by which maternal metabolites and inflammatory status was altered after LZM supplementation.

4.
Eur J Nutr ; 59(1): 327-344, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30701304

RESUMO

PURPOSE: Dietary protein, as important macronutrient, is vital for intestinal function and health status. We aimed to determine the effects of dietary protein source on growth performance and intestinal function of neonates with intrauterine growth retardation (IUGR) in a pig model. METHODS: Eighteen pairs of IUGR and normal birth weight (NBW) weaned pigs were allotted to be fed starter diet containing soybean protein concentrate (SPC) or spray-dried porcine plasma (SDPP) for 2 weeks. Growth performance, antioxidant variables, intestinal morphology and absorption capability, microbiota composition and short-chain fatty acids (SCFA) were assessed. RESULTS: IUGR led to poor growth performance, absorption capability and changes on antioxidant variables, while SDPP diet improved the growth performance, diarrhea index, intestinal morphology and antioxidant variables of IUGR or NBW pigs relative to that fed SPC diet. Importantly, SDPP diet improved bacterial diversity and increased the abundance of phylum Firmicutes, but decreased the phylum Proteobacteria in colonic digesta, associating with higher genera Lactobacillus and lower genera Escherichia-Shigella, linking to the increased concentration of SCFA. CONCLUSIONS: Our findings indicate that IUGR impairs the growth rate, intestinal function and oxidative status of weaned pigs, which could be partly improved by SDPP diet either for IUGR or NBW pigs, associating with the better antioxidant capability, composition of microbiotas and their metabolites.

5.
Metabolites ; 9(12)2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31817081

RESUMO

Sows suffering excess weight loss during lactation may delay weaning to estrus interval (WEI) and have a detrimental effect on subsequent reproductive performance, however, the underlying mechanism is not completely clear. Therefore, the goal of this study was to investigate physiological profiles manifested in plasma originating from high (HWL) and low lactational weight loss (LWL) sows. The plasma biochemical parameters, hormones, antioxidant parameters, and milk compositions were assessed. Furthermore, plasma metabolites were analyzed using ultrahigh-performance liquid chromatography/time-of-flight mass spectrometry in positive and negative ion modes. Results showed that HWL sows had a lower feed intake and higher lactational weight loss and prolonged WEI, but had similar litter performance and milk composition compared to LWL sows. These changes were associated with lower plasma insulin-like growth factor 1 and higher fibroblast growth factor 21 levels in the HWL sows. Moreover, HWL led to a severe oxidative stress and metabolic damage, as accompanied by excessive protein breakdown and lipids mobilization at weaning. Metabolomic analysis revealed differences in 46 compounds between HWL and LWL sows, and the identified compounds were enriched in metabolic pathways related to amino acids metabolism, fatty acids oxidation metabolism, bile acids biosynthesis, and nucleoside metabolism. These results provide the evidence for physiological mechanism in sows with excessive lactational weight loss that delayed the WEI. Metabolomic data provides essential information and gives rise to potential targets for the development of nutritional intervention strategies.

6.
Int J Mol Sci ; 21(1)2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31861629

RESUMO

To study the effects of maternal dietary fiber composition during gestation on offspring antioxidant capacity, inflammation, and gut microbiota composition, we randomly assigned 64 gilts to four treatments and administered diets with an insoluble/soluble fiber ratio of 3.89 (R1), 5.59 (R2), 9.12 (R3), and 12.81 (R4). Sow samples (blood and feces at gestation 110) and neonatal samples (blood, liver, and colonic contents) were collected. The results showed that sows and piglets in R1 and R2 had higher antioxidant enzyme activity and lower pro-inflammatory factor levels than those in R3 and R4. Moreover, piglets in R1 and R2 had higher liver mRNA expression of Nrf2 and HO-1 and lower NF-κB than piglets in R4. Interestingly, maternal fiber composition not only affected the production of short-chain fatty acids (SCFAs) in sow feces but also influenced the concentrations of SCFAs in the neonatal colon. Results of high-throughput sequencing showed that piglets as well as sows in R1 and R2 had microbial community structures distinct from those in R3 and R4. Therefore, the composition of dietary fiber in pregnancy diet had an important role in improving antioxidant capacity and decreasing inflammatory response of mothers and their offspring through modulating the composition of gut microbiota.

7.
Food Funct ; 10(12): 8149-8160, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31696186

RESUMO

Flaxseed oil (FO), enriched in n-3 polyunsaturated fatty acids (PUFAs), is an important oil source for intestinal development and health. We aimed to study the different effects of FO versus soybean oil (SO) on growth, intestinal health and immune function of neonates with intrauterine growth retardation (IUGR) using a weaned piglet model. Forty pairs of male IUGR and normal birth weight piglets, weaned at 21 ± 1 d, were fed diets containing either 4% FO or SO for 3 weeks consecutively. Growth performance, nutrient digestibility and intestinal function parameters, immunology and microbiota composition were determined. IUGR led to a poor growth rate, nutrient digestibility and abnormal immunology variables, whereas feeding FO diet improved systemic and gut immunity, as indicated by increased plasma concentration of immunoglobulin G and decreased CD3+CD8+ T lymphocytes, and down-regulated intestinal expression of genes (MyD88, NF-κB, TNF-α, IL-10). Although IUGR tended to decrease villous height, feeding FO diet tended to increase the villi-crypt ratio and up-regulated expressions of tight junction genes (Claudin-1 and ZO-1), together with increased mucosa contents of n-3 PUFAs and a lower Σn-6/Σn-3 ratio. Besides, FO diet decreased the abundance of pathogenic bacteria Spirochaetes, and increased phylum Actinobacteria, and genera Blautia and Bifidobacterium in colonic digesta. Our findings indicate that IUGR impairs growth rate, nutrient digestibility, and partly immunology variables, whereas feeding FO-supplemented diet could improve intestinal function and immunity of both IUGR and NBW pigs, associated with the altered gut microbiome and mucosal fatty acid profile.

8.
J Nutr Biochem ; 74: 108246, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31671360

RESUMO

The risk of overweight or obesity in association with early exposure of antibiotics remains an important public issue for health-care of children. Low-dose antibiotics (LDA) have been widely used to enhance growth rate of pigs, providing a good animal model to study the underlying mechanism. In present study, 28 female piglets, weaned at 21 d, were randomly classified into two groups, receiving either a control diet or a diet supplemented with LDA for 4 weeks. The total bacterial load and intestinal microbiota were determined by qPCR and 16S rRNA amplicon sequencing. UPLC-QTRAP-MS/MS and RNA-seq were further used to determine the colonic SCFAs and transcriptomes. Results showed that LDA significantly increased growth rate and food intake. The F/B index, Methanosphaera species, and the pathway of "carbohydrate metabolism" were improved by LDA exposure, indicating the better carbohydrate degradation and energy utilization. Furthermore, correlation analysis indicated the microbial community contributing to SCFAs production was enriched upon LDA exposure, associating with increased concentrations of short-chain and branched-chain fatty acids (caproate, 2-methyl butyrate and 4-methyl valerate). A multivariate linear fitting model analysis highlighted that caproate was positively correlated with two genera (Faecalibacterium and Allisonella) and four differentially expressed genes (ZNF134, TBX5, NEU4 and SEMA6D), which were all significantly increased upon LDA exposure. Collectively, our study indicates that the growth-promoting effect of LDA exposure in early life is associated with the shifts of colonic microbiota to increase utilization of carbohydrates and energy, enhanced SCFAs production and colonic functions.

9.
Animals (Basel) ; 9(11)2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31671888

RESUMO

: Ovarian follicle activation and survival were recently found to be controlled by nutrient sensors AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) and apoptosis related markers Caspase-3, Bax, and Bcl-2, yet their expression as regulated by dietary fiber remained uncertain for gilts. To investigate the effects of dietary fiber levels on ovarian follicle development, and the cellular molecular components related to follicle activation and survival of gilts, 76 gilts with similar bodyweight and age were fed four diets, including a corn-soybean meal based control diet, or other three diets to consume 50%, 75%, and 100% more dietary fiber than the control gilts at different experimental phases. Inulin and cellulose (1:4) were added to the corn-soybean meal basal diet to increase dietary fiber content. The growth traits, and the age, bodyweight, and backfat thickness at puberty were not affected by diets. The number of primordial follicles and total follicles per cubic centimeter of ovarian tissue linearly increased with dietary fiber level at day 30 of the experiment and at the 19th day of the 3rd estrous cycle, without negatively affecting the formation of antral follicle with diameter between 1-3 mm or larger than 3 mm. These changes were associated with altered phosphorylation of mTOR, S6, Extracellular regulated protein kinases 1/2 (ERK1/2) and AMPK, and mRNA expression of Caspase-3, Bax, and Bcl-2 in ovarian tissues. Collectively, this study demonstrated a beneficial effect of dietary fiber on the ovarian follicle reserve in gilts, which provides a basis for enhancing reproduction in the short- or long-term.

10.
Sci Rep ; 9(1): 14533, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601864

RESUMO

We determined the effects of insufficient maternal energy on testicular development in offspring in a swine model. Thirty-six sows were divided into control (CON) and low-energy diet (LE) groups during gestation. We observed that the number of Sertoli, germ, and Leydig cells in the offspring of the CON group were significantly higher than those in the LE group at 28 and 120 d after birth. Furthermore, the percentage of apoptotic testis cells was significantly higher in the offspring of the LE group than in the CON group. Transcriptome analysis of differentially expressed mRNAs and long noncoding RNAs in offspring testes indicated that these RNAs were mainly involved in lipid metabolism, apoptosis, cell proliferation, and some pivotal regulatory pathways. Results revealed that AMPK-PI3K-mTOR, MAPK, and oxidative phosphorylation signaling pathways play an important role in mediating the programming effect of insufficient maternal energy on testicular development, and that this effect occurs mainly at an early stage in life. mRNA and protein expression analyses confirmed the importance of certain signaling pathways in the regulation of testicular development. This study provides insights into the influence and possible mechanism underlying the effect of inadequate maternal energy intake on testicular development in the offspring.

11.
Int J Mol Sci ; 20(18)2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31540305

RESUMO

To study the effects of maternal fiber supplementation during pregnancy on the testicular development of male offspring and its possible mechanisms, 36 sows (Landrace × Yorkshire) were allocated to either a control diet (n = 18) or a fiber diet (the control diet supplemented with 22.60 g/kg inulin and 181.60 g/kg cellulosic; n = 18) during pregnancy. The body and testes weight of the offspring, 7-day-old piglets, was recorded. Testes were collected for further analyses. Results showed that the testicular organ index and the number of spermatogonia in single seminiferous tubule were higher in piglets from the fiber group than from the control group (p < 0.05). In addition, a significant increase in the concentration of glucose, lactate, and lipids in the testes was found in the fiber group (p < 0.05). Proteomic analysis suggested that there were notable differences in glucolipid transport and metabolism, oxidation, and male reproduction-related proteins expression between the two groups (p < 0.05). Results revealed that the most enriched signaling pathways in the fiber group testes included starch and sucrose metabolism, fatty acid metabolism, glutathione metabolism, and the renin-angiotensin system. mRNA expression analyzes further confirmed the importance of some signaling pathways in maternal fiber nutrition regulating offspring testicular development. Our results shed new light on the underlying molecular mechanisms of maternal fiber nutrition on offspring testicular development and provided a valuable insight for future explorations of the effect of maternal fiber nutrition on man reproduction.


Assuntos
Fibras na Dieta/administração & dosagem , Redes Reguladoras de Genes/efeitos dos fármacos , Proteômica/métodos , Testículo/crescimento & desenvolvimento , Fenômenos Fisiológicos da Nutrição Animal , Animais , Peso Corporal/efeitos dos fármacos , Estudos de Casos e Controles , Fibras na Dieta/farmacologia , Feminino , Perfilação da Expressão Gênica/veterinária , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Tamanho do Órgão/efeitos dos fármacos , Gravidez , Suínos , Testículo/efeitos dos fármacos , Testículo/metabolismo
12.
Animals (Basel) ; 9(9)2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31480207

RESUMO

This study explored the impact of fresh sweet potato vine on the growth as well as the metabolites and colon microbial composition in Chinese Meishan gilt. Twenty Meishan gilts (body weight 30 ± 0.18 kg, n = 10 per treatment) were randomly assigned to a control (CON) or sweet potato vine (SPV) supplementation diet treatment. Gilts were housed in individual stalls. In the SPV treatment, 2 kg fresh sweet potato vine was used instead of 0.18 kg basal diet which provided the same amount of digestive energy and crude protein with the exception of crude fiber (CON, 51.00 g/d vs. SPV, 73.94 g/d) in terms of dry matter intake. Gilts were slaughtered and samples were collected on day 19 after the third estrus cycle. The SPV treatment tended to increase slaughter weight of gilts (p = 0.07); it also increased (p < 0.05) gastrointestinal tract weight and intestinal muscle layer thickness. SPV treatment also decreased (p < 0.05) carcass yield and subcutaneous adipose tissue. The concentration of zonulin and endotoxin in plasma was decreased (p < 0.05) as the gilt consumed the SPV diet. Colonic fecal concentrations of endotoxin, lipocalin-2, and tumor necrosis factor-α (TNF-α) were decreased (p < 0.05), and interleukin-10 (IL-10) was increased (p < 0.05) in the SPV treatment. Butyric acid and acetate concentration in colonic content as well as acetate concentration in caecal content were increased (p < 0.05) in the SPV treatment. Furthermore, the expression of carnitine palmityl transferase (CPT-1) and peroxisome proliferator-activated receptor-α (PPAR-α) in gilt liver in SPV treatment was increased (p < 0.05) in comparison with CON treatment. Meanwhile, the composition of the colon microbes was also altered by SPV; representative changes included an increase in Lactobacillus, Bacteroides, Roseburia, and Lachnospira. These results indicate that gilt fed with sweet potato vine had decreased gut permeability, endotoxin and pro-inflammatory cytokines concentrations; colonic fecal microbiota was also changed, which may be further beneficial to the intestinal health of Chinese Meishan gilt.

13.
J Anim Sci Biotechnol ; 10: 72, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31452881

RESUMO

Background: This study aimed to investigate the effects of oral administration of Enterococcus faecium NCIMB 10415 (E. faecium) on intestinal development, immunological parameters and gut microbiota of neonatal piglets challenged with enterotoxigenic Escherichia coli K88 (ETEC). A total of 96 1-day-old sow-reared piglets were randomly assigned to 2 groups, with 48 piglets in each group. The piglets were from 16 litters (6 piglets each litter), and 3 piglets each litter were allocated to the E. faecium-supplemented (PRO) group, while the other 3 piglets were allocated to the control (CON) group. After colostrum intake, piglets in the PRO group were orally administrated with 3 × 109 CFU E. faecium per day for a period of one week. On day 8, one piglet per litter from each group was challenged (CON+ETEC, PRO+ETEC) or not (CON-ETEC, PRO-ETEC) with ETEC in a 2 × 2 factorial arrangement of treatments. On day 10 (2 days after challenge), blood and tissue samples were obtained from piglets. Results: Before ETEC challenge, there were no significant differences for the average daily gain (ADG) and fecal score between the two groups of piglets. After ETEC challenge, the challenged piglets had greater fecal score compared to the non-challenged piglets, whereas E. faecium administration was able to decrease the fecal score. Piglets challenged with ETEC had shorter villous height, deeper crypt depth, and reduced number of goblet cells in the jejunum and decreased mRNA abundance of claudin-1 in the ileum, whereas increased the percentage of lymphocytes, concentrations of IL-1ß in the plasma and TNF-α in the ileal mucosa, as well as increased the mRNA abundances of innate immunity-related genes in the ileum tissue. These deleterious effects caused by ETEC were partly alleviated by feeding E. faecium. In addition, piglets in PRO-ETEC group had decreased the percentage of CD8+ T cells of the peripheral blood when compared to those in CON-ETEC group. Moreover, E. faecium administration increased Verrucomicrobia at phylum level and decreased Bilophila at genus level. Conclusions: These results suggest that oral administration of E. faecium alleviated the intestinal injury and diarrhea severity of neonatal piglets challenged by ETEC, partly through improving the intestinal microbiota and immune response. This offers a potential strategy of dietary intervention against intestinal impairment by ETEC in neonatal piglets.

14.
Int J Mol Sci ; 20(17)2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31443432

RESUMO

Placenta performs the function of several adult organs for the fetus during intrauterine life. Because of the dramatic physiological and metabolic changes during pregnancy and the strong association between maternal metabolism and placental function, the possibility that variation in gene expression patterns during pregnancy might be linked to fetal health warrants investigation. Here, next-generation RNA sequencing was used to investigate the expression profile, including mRNAs and long non-coding RNAs (lncRNAs) of placentas on day 60 of gestation (G60), day 90 of gestation (G90), and on the farrowing day (L0) in pregnant swine. Bioinformatics analysis of differentially expressed mRNAs and lncRNAs consistently showed dysregulation of bile acids transport and detoxification as pregnancy progress. We found the differentially expressed mRNAs, particularly bile salt export pump (ABCB11), organic anion-transporting polypeptide 1A2 (OATP1A2), carbonic anhydrase II (CA2), Na+-HCO3- cotransporter (NBC1), and hydroxysteroid sulfotransferases (SULT2A1) play an important role in bile acids transport and sulfation in placentas during pregnancy. We also found the potential regulation role of ALDBSSCG0000000220 and XLOC_1301271 on placental SULT2A1. These findings have uncovered a previously unclear function and its genetic basis for bile acids metabolism in developing placentas and have important implications for exploring the potential physiological and pathological pathway to improve fetal outcomes.


Assuntos
Ácidos e Sais Biliares/metabolismo , Inativação Metabólica , Placenta/metabolismo , Transcriptoma , Animais , Transporte Biológico , Biologia Computacional/métodos , Feminino , Perfilação da Expressão Gênica , Humanos , Gravidez , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Suínos
15.
Animals (Basel) ; 9(7)2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-31284518

RESUMO

To investigate the effects of the ratio of insoluble fiber to soluble fiber (ISF:SF) on sow performance and piglet intestinal development, we randomly assigned 64 gilts to four treatments comprising diets with the same level of dietary fiber, but different ISF:SF values of 3.89 (T1), 5.59 (T2), 9.12 (T3), and 12.81 (T4). At birth and weaning, six piglets per treatment at each phase were slaughtered for sampling. As ISF:SF increased, the mean piglet body weight (BW) at weaning and piglet BW gain, which were all significantly higher in T1 and T2 compared with T3 and T4 (p < 0.05), showed a linear decrease (p < 0.05); the crypt depth of the jejunum in weaned piglets linearly increased, whereas the duodenal weight, jejunal villus height, and villus height/crypt depth in newborn piglets and enzymatic activity of lactase, sucrase, and maltase linearly decreased (p < 0.05). No differences were observed in the yield and composition of milk (p > 0.05). Moreover, when the ISF:SF was 3.89 in gestation diets, higher piglet BW at weaning occurred, possibly because the ISF:SF affected development and enzymatic activity in the small intestine-effects related to digestion and absorption of nutrients-and consequently enhanced piglet BW gain.

16.
J Anim Sci ; 97(8): 3426-3439, 2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-31233597

RESUMO

This study was conducted to investigate the effects of Clostridium butyricum addition to diets in late gestation and lactation on the reproductive performance and gut microbiota for sows. A total of 180 healthy Landrace × Yorkshire sows at 90 d of gestation were randomly assigned to one of four groups, with 45 replicates per group, receiving a basal commercial diet (Control, 0% C. butyricum) or diet added with 0.1% C. butyricum (1 × 108 CFU/kg of feed), 0.2% C. butyricum (2 × 108 CFU/kg of feed), 0.4% C. butyricum (4 × 108 CFU/kg of feed), respectively. The experiment was conducted from 90 d of gestation to weaning at 21 d of lactation. The results showed that the interval between piglet born was linearly (P < 0.05) decreased, and the duration of farrowing was significantly (quadratic, P < 0.05) shortened as C. butyricum addition increased. There was a linear (P < 0.05) increase in litter weight at weaning and litter weight gain. The concentrations of IgG and IgM in colostrum, and IgM in milk were linearly increased (P < 0.05) as C. butyricum addition. Serum MDA concentrations of sows at parturition and 14 d in lactation, and piglets at 14 and 21 d of age were linearly (P < 0.05) decreased, respectively. The serum total antioxidant capacity concentrations of sows at parturition and 14 and 21 d in lactation, and piglets at 14 and 21 d of age were linearly (P < 0.05) increased as C. butyricum addition, respectively. There was a linear decrease in the serum endotoxin concentration of sows on 21 d in lactation (P < 0.05). The serum cortisol concentrations of piglets at 14 and 21 d of age were both significantly (quadratic, P < 0.05) decreased. The 0.2% C. butyricum increased the relative abundance of Bacteroidetes (P = 0.016) at phylum level, Prevotellaceae_NK3B31_group, Prevotella_1, Prevotellaceae_UCG-003, Prevotella_9, Alloprevotella (P < 0.05) at genus level, and decreased the relative abundance of Proteobacteria, Gemmatimonadetes, Actinobacteria (P < 0.001) at phylum level, and Clostridium_sensu_stricto_1, Streptococcus, Escheruchia-Shigella, Sphingomonas, Succinivibrio (P < 0.05) at genus level and Firmicutes/Bacteroidetes ratio (P = 0.020). In conclusion, the present research indicated that dietary addition with C. butyricum could shorten the duration of farrowing and enhance the growth performance of suckling piglets. Moreover, 0.2% C. butyricum administration to sows changed the composition of intestinal microbiota, especially increased the relative abundance of Prevotella.


Assuntos
Ração Animal/análise , Clostridium butyricum/fisiologia , Microbioma Gastrointestinal , Reprodução , Suínos/microbiologia , Animais , Antioxidantes/análise , Colostro/imunologia , Dieta/veterinária , Feminino , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Intestinos/microbiologia , Lactação , Leite/imunologia , Parto , Gravidez , Suínos/imunologia , Desmame , Ganho de Peso/efeitos dos fármacos
17.
J Agric Food Chem ; 67(32): 8950-8957, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31189310

RESUMO

To determine how nutritional restriction compromised milk synthesis, sows were fed 100% (control) or 76% (restricted) of the recommended feed allowance from postpartum day (PD)-1 to PD-28. In comparison to the control, more body reserves loss, increased plasma triglyceride and high-density lipoprotein cholesterol levels, and decreased plasma methionine concentrations were observed in the restricted group at PD-21. The increased plasma malondialdehyde level, decreased plasma histidine and taurine concentrations, and decreased glutathione peroxidase activity were observed at PD-28 when backfat loss further increased in the restricted group. In mammary glands, vacuolar H+-adenosine triphosphatase (v-ATPase), as the upstream of the mechanistic target of rapamycin (mTOR) signaling, showed decreased activity, while phosphorylation of mTOR, S6 kinase, and eukaryotic translation initiation factor 4E-binding protein 1 and ß-casein abundance all decreased following feed restriction. Altogether, long-term nutrition restriction could induce progressively aggravated oxidative stress and compromise mammary protein synthesis through repression of v-ATPase/mTORC1 signaling.


Assuntos
Glândulas Mamárias Animais/enzimologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Estresse Oxidativo , Biossíntese de Proteínas , Suínos/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Animais , Células Epiteliais/metabolismo , Feminino , Glândulas Mamárias Animais/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Leite/metabolismo , Fosforilação , Período Pós-Parto/metabolismo , Gravidez , Transdução de Sinais , Suínos/genética , ATPases Vacuolares Próton-Translocadoras/genética
18.
Animals (Basel) ; 9(6)2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-31151241

RESUMO

This study was conducted to evaluate the effects of sweet potato vine on the onset of puberty and the follicular development in the ovaries of Chinese Meishan gilts. A total of 20 Meishan gilts (initial body weight at 30 ± 0.18 kg) were randomly fed a control (CON) or sweet potato vine (SPV) supplemented diet until 19 days following the third estrous. Sweet potato vine was instead of part of basal diet with the same amount of energy and protein in the sweet potato vine group. The results indicate that gilts fed with sweet potato vine reached puberty 9.4 days later. The development of ovaries was enhanced by sweet potato vine supplementation, characterized by an increase (p < 0.05) in the relative weight of the ovaries and the number of large follicles (>5 mm). Sweet potato vine supplementation increased (p < 0.05) the total superoxide dismutase (T-SOD) and reduced (p < 0.05) the concentration of malondialdehyde (MDA) in the serum of the gilts. Also, the expression of superoxide dismutase-1 (SOD1) and luteinizing hormone receptor (LHR) mRNA in the granulosa cells from the large follicle (>5 mm) of gilts in the SPV group were increased (p < 0.05) as compared with the CON group. These results indicate that gilts fed with sweet potato vine exhibited delayed puberty as well as improved follicular development, which may contribute to the reproductive performance of Chinese Meishan gilts.

19.
Brain Behav Immun ; 2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-31026499

RESUMO

New generation, multicomponent parenteral lipid emulsions provide key fatty acids for brain growth and development, such as docosahexaenoic acid (DHA) and arachidonic acid (AA), yet the content may be suboptimal for preterm infants. Our aim was to test whether DHA and AA-enriched lipid emulsions would increase activity, growth, and neurodevelopment in preterm piglets and limit brain inflammation. Cesarean-delivered preterm pigs were given three weeks of either enteral preterm infant formula (ENT) or TPN with one of three parenteral lipid emulsions: Intralipid (IL), SMOFlipid (SMOF) or an experimental emulsion (EXP). Activity was continuously monitored and weekly blood sampling and behavioral field testing performed. At termination of the study, whole body and tissue metrics were collected. Neuronal density was assessed in sections of hippocampus (HC), thalamus, and cortex. Frontal cortex (FC) and HC tissue were assayed for fatty acid profiles and expression of genes of neuronal growth and inflammation. After 3 weeks of treatment, brain DHA content in SMOF, EXP and ENT pigs was higher (P < 0.01) in FC but not HC vs. IL pigs. There were no differences in brain weight or neuron density among treatment groups. Inflammatory cytokine TNFα and IL-1ß expression in brain regions were increased in IL pigs (P < 0.05) compared to other groups. Overall growth velocity was similar among groups, but IL pigs had higher percent body fat and increased insulin resistance compared to other treatments (P < 0.05). ENT pigs spent more time in higher physical activity levels compared to all TPN groups, but there were no differences in exploratory behavior among groups. We conclude that a soybean oil emulsion increased select brain inflammatory cytokines and multicomponent lipid emulsions enriched with DHA and AA in parenteral lipids results in increased cortical DHA and improved body composition without affecting short term neurodevelopmental outcomes.

20.
Am J Physiol Gastrointest Liver Physiol ; 317(1): G8-G16, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31021171

RESUMO

Cholestasis of pregnancy endangers fetal and neonatal survival, yet systematic knowledge of the cause and effect of disrupted bile acid (BA) homeostasis in pregnancy is limited. Here we show that gestation stage-associated BA dysregulation in swine correlated with fetal death resulting from compromised capacity for BA secretion and increased alternative systemic efflux. The balance of BA input and output in the developing uterus suggested little uptake and metabolism of maternal BA by the placenta-fetus unit, implying a protection role of placenta in preventing maternal BA transported into the fetus. We showed that the maternal origin of BA accounted for the increase in placental total BA, leading to dysregulated expression of genes involved in BA transport and potentially impaired transplacental export of fetus-derived BA. Correspondingly, the secondary BA, mainly derived from the mother, gradually decreased in the fetus. Finally, we identified that sulfation rather than glucuronidation played pivotal roles in maintaining BA homeostasis of the developing fetus. These novel and systemic findings contribute to a whole picture of BA metabolism in pregnancy and provide new insights into mechanisms responsible for maternal and fetal BA homeostasis. NEW & NOTEWORTHY We used a swine model to demonstrate the potentially impaired transplacental bile acid (BA) export, immaturity of fetal hepatic excretory function, and elevated BA synthesis in the developing fetus. Under these conditions, we have further identified that BA sulfation plays a pivotal role in regulation of fetal BA homeostasis, which appears to depend on the balance of BA synthesis and sulfation capacity. These novel findings have uncovered a previously unknown mechanism of BA homeostasis regulation in the developing fetus.


Assuntos
Ácidos e Sais Biliares/sangue , Colestase Intra-Hepática/metabolismo , Sangue Fetal/metabolismo , Troca Materno-Fetal , Metabolômica/métodos , Circulação Placentária , Complicações na Gravidez/metabolismo , Sulfatos/sangue , Animais , Colestase Intra-Hepática/sangue , Colestase Intra-Hepática/genética , Colestase Intra-Hepática/fisiopatologia , Cromatografia Líquida de Alta Pressão , Feminino , Morte Fetal , Idade Gestacional , Homeostase , Espectrometria de Massas , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Desintoxicação Metabólica Fase II , Gravidez , Complicações na Gravidez/sangue , Complicações na Gravidez/genética , Complicações na Gravidez/fisiopatologia , Sus scrofa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA