Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
2.
Genome Med ; 11(1): 12, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30819258

RESUMO

BACKGROUND: Neurodevelopmental disorders are genetically and phenotypically heterogeneous encompassing developmental delay (DD), intellectual disability (ID), autism spectrum disorders (ASDs), structural brain abnormalities, and neurological manifestations with variants in a large number of genes (hundreds) associated. To date, a few de novo mutations potentially disrupting TCF20 function in patients with ID, ASD, and hypotonia have been reported. TCF20 encodes a transcriptional co-regulator structurally related to RAI1, the dosage-sensitive gene responsible for Smith-Magenis syndrome (deletion/haploinsufficiency) and Potocki-Lupski syndrome (duplication/triplosensitivity). METHODS: Genome-wide analyses by exome sequencing (ES) and chromosomal microarray analysis (CMA) identified individuals with heterozygous, likely damaging, loss-of-function alleles in TCF20. We implemented further molecular and clinical analyses to determine the inheritance of the pathogenic variant alleles and studied the spectrum of phenotypes. RESULTS: We report 25 unique inactivating single nucleotide variants/indels (1 missense, 1 canonical splice-site variant, 18 frameshift, and 5 nonsense) and 4 deletions of TCF20. The pathogenic variants were detected in 32 patients and 4 affected parents from 31 unrelated families. Among cases with available parental samples, the variants were de novo in 20 instances and inherited from 4 symptomatic parents in 5, including in one set of monozygotic twins. Two pathogenic loss-of-function variants were recurrent in unrelated families. Patients presented with a phenotype characterized by developmental delay, intellectual disability, hypotonia, variable dysmorphic features, movement disorders, and sleep disturbances. CONCLUSIONS: TCF20 pathogenic variants are associated with a novel syndrome manifesting clinical characteristics similar to those observed in Smith-Magenis syndrome. Together with previously described cases, the clinical entity of TCF20-associated neurodevelopmental disorders (TAND) emerges from a genotype-driven perspective.


Assuntos
Anormalidades Craniofaciais/genética , Deficiências do Desenvolvimento/genética , Mutação INDEL , Deficiência Intelectual/genética , Hipotonia Muscular/genética , Síndrome de Smith-Magenis/genética , Fatores de Transcrição/genética , Adolescente , Criança , Pré-Escolar , Anormalidades Craniofaciais/patologia , Deficiências do Desenvolvimento/patologia , Feminino , Humanos , Lactente , Deficiência Intelectual/patologia , Masculino , Hipotonia Muscular/patologia , Síndrome de Smith-Magenis/patologia , Fatores de Transcrição/metabolismo , Adulto Jovem
3.
Bone ; 121: 163-171, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30599297

RESUMO

Heterozygous pathogenic variants in the FN1 gene, encoding fibronectin (FN), have recently been shown to be associated with a skeletal disorder in some individuals affected by spondylometaphyseal dysplasia with "corner fractures" (SMD-CF). The most striking feature characterizing SMD-CF is irregularly shaped metaphyses giving the appearance of "corner fractures". An array of secondary features, including developmental coxa vara, ovoid vertebral bodies and severe scoliosis, may also be present. FN is an important extracellular matrix component for bone and cartilage development. Here we report five patients affected by this subtype of SMD-CF caused by five novel FN1 missense mutations: p.Cys123Tyr, p.Cys169Tyr, p.Cys213Tyr, p.Cys231Trp and p.Cys258Tyr. All individuals shared a substitution of a cysteine residue, disrupting disulfide bonds in the FN type-I assembly domains located in the N-terminal assembly region. The abnormal metaphyseal ossification and "corner fracture" appearances were the most remarkable clinical feature in these patients. In addition, generalized skeletal fragility with low-trauma bilateral femoral fractures was identified in one patient. Interestingly, the distal femoral changes in this patient healed with skeletal maturation. Our report expands the phenotypic and genetic spectrum of the FN1-related SMD-CF and emphasizes the importance of FN in bone formation and possibly also in the maintenance of bone strength.

4.
Hum Mutat ; 40(3): 243-257, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30582250

RESUMO

The PCDH19 gene consists of six exons encoding a 1,148 amino acid transmembrane protein, Protocadherin 19, which is involved in brain development. Heterozygous pathogenic variants in this gene are inherited in an unusual X-linked dominant pattern in which heterozygous females are affected, while hemizygous males are typically unaffected, although they pass on the pathogenic variant to each affected daughter. PCDH19-related disorder is known to cause early-onset epilepsy in females characterized by seizure clusters exacerbated by fever and in most cases, onset is within the first year of life. This condition was initially described in 1971 and in 2008 PCDH19 was identified as the underlying genetic etiology. This condition is the result of pathogenic loss-of-function variants that may be de novo or inherited from an affected mother or unaffected father and cellular interference has been hypothesized to be the culprit. Heterozygous females are symptomatic because of the presence of both wild-type and mutant cells that interfere with one another due to the production of different surface proteins, whereas nonmosaic hemizygous males produce a homogenous population of cells. Here, we review novel pathogenic variants in the PCDH19 gene since 2012 to date, and summarize any genotype-phenotype correlations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA