Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 188
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sleep Med ; 67: 278-285, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32057628

RESUMO

STUDY OBJECTIVES: Obstructive sleep apnea (OSA) is a sleep disorder caused by transient obstruction of the upper airway and results in intermittent hypoxia, sleep fragmentation, sympathetic nervous system activation, and arousal which can have an adverse effect on cardiovascular disease. It is theorized that OSA might intensify stroke injury. Our goal here was to develop a new model of experimental OSA and test its ability to aggravate behavioral and morphological outcomes following transient brain ischemia/reperfusion. METHODS: We used a 3D printed OSA device to expose C57BL6 mice to 3 h of OSA (obstructive apnea index of 20 events per hour) for three days. These mice were then subjected to ischemia/reperfusion using the middle cerebral artery occlusion model (MCAO) stroke and examined for overall survival, infarct size and neurological scoring. RESULTS: We found that OSA transiently decreased respiration and reduced oxygen saturation with bradycardia and tachycardia typical of human responses during apneic events. Brain injury from MCAO was significantly increased by OSA as measured by infarct size and location as well as by intensification of neurological deficits; mortality following MCAO was also increased in OSA animals. CONCLUSIONS: Our findings suggest that our new model of OSA alters respiratory and cardiovascular physiological functions and is associated with enhanced ischemia/reperfusion mediated injury in our non-invasive, OSA intensified model of stroke.

2.
Tissue Eng Part A ; 26(5-6): 358-370, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32085691

RESUMO

Type I collagen hydrogels are of high interest in tissue engineering. With the evolution of 3D bioprinting technologies, a high number of collagen-based scaffolds have been reported for the development of 3D cell cultures. A recent proposal was to mix collagen with silk fibroin derived from Bombyx mori silkworm. Nevertheless, due to the difficulties in the preparation and the characteristics of the protein, several problems such as phase separation and collagen denaturation appear during the procedure. Therefore, the common solution is to diminish the concentration of collagen although in that way the most biologically relevant component is reduced. In this study, we present a new, simple, and effective method to develop a collagen-silk hybrid hydrogel with high collagen concentration and with increased stiffness approaching that of natural tissues, which could be of high interest for the development of cardiac patches for myocardial regeneration and for preconditioning of mesenchymal stem cells (MSCs) to improve their therapeutic potential. Sericin in the silk was preserved by using a physical solubilizing procedure that results in a preserved fibrous structure of type I collagen, as shown by ultrastructural imaging. The macro- and micromechanical properties of the hybrid hydrogels measured by tensile stretch and atomic force microscopy, respectively, showed a more than twofold stiffening than the collagen-only hydrogels. Rheological measurements showed improved printability properties for the developed biomaterial. The suitability of the hydrogels for 3D cell culture was assessed by 3D bioprinting bone marrow-derived MSCs cultured within the scaffolds. The result was a biomaterial with improved printability characteristics that better resembled the mechanical properties of natural soft tissues while preserving biocompatibility owing to the high concentration of collagen. Impact statement In this study, we report the development of silk microfiber-reinforced type I collagen hydrogels for 3D bioprinting and cell culture. In contrast with previously reported studies, a novel physical method allowed the preservation of the silk sericin protein. Hydrogels were stable, showed no phase separation between the biomaterials, and they presented improved printability. An increase between two- and threefold of the multiscale stiffness of the scaffolds was achieved with no need of using additional crosslinkers or complex methods, which could be of high relevance for cardiac patches development and for preconditioning mesenchymal stem cells (MSCs) for therapeutic applications. We demonstrate that bone marrow-derived MSCs can be effectively bioprinted and 3D cultured within the stiffened structures.

3.
Menopause ; 2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-32108736

RESUMO

OBJECTIVE: Intermittent hypoxia (IH)-a hallmark of obstructive sleep apnea (OSA)-enhances lung cancer progression in mice via altered host immune responses that are also age and sex-dependent. However, the interactions of menopause with IH on tumor malignant properties remain unexplored. Here, we aimed to investigate lung cancer outcomes in the context of ovariectomy (OVX)-induced menopause in a murine model of OSA. METHODS: Thirty-four female mice (C57BL/6, 12-week-old) were subjected to bilateral OVX or to Sham intervention. Six months after surgery, mice were pre-exposed to either IH or room air (RA) for 2 weeks. Then, 10 lung carcinoma (LLC1) cells were injected subcutaneously in the left flank, with IH or RA exposures continued for 4 weeks. Tumor weight, tumor invasion, and spontaneous lung metastases were assessed. Tumor-associated macrophages (TAMs) were isolated and subjected to flow cytometry polarity evaluation along with assessment of TAMs modulation of LLC1 proliferation in vitro. To determine the effect of IH and OVX on each experimental variable, a two-way analysis of variance was performed. RESULTS: IH and OVX promoted a similar increase in tumor growth (∼2-fold; P = 0.05 and ∼1.74-fold; P < 0.05, respectively), and OVX-IH further increased it. Regarding lung metastasis, the concurrence of OVX in mice exposed to IH enhanced the number of metastases (23.7 ±â€Š8.0) in comparison to those without OVX (7.9 ±â€Š2.8; P < 0.05). The pro-tumoral phenotype of TAMS, assessed as M2/M1 ratio, was increased in OVX (0.06 ±â€Š0.01; P < 0.01) and IH (0.06 ±â€Š0.01; P < 0.01) compared with sham/RA conditions (0.14 ±â€Š0.03). The co-culture of TAMS with naive LLC1 cells enhanced their proliferation only under IH. CONCLUSION: In female mice, both the IH that is characteristically present in OSA and OVX as a menopause model emerge as independent contributors that promote lung cancer aggressiveness and seemingly operate through alterations in the host immune response.

4.
Int J Obes (Lond) ; 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32071426

RESUMO

The interest on a potential association between cancer and sleep-disordered breathing (SDB) has clearly gained substantial traction over the last several years. This novel relationship was initially explored in experimental models of obstructive sleep apnea (OSA) and showed that both intermittent hypoxia and sleep fragmentation, the two main hallmarks of OSA, promoted alterations in both tumorigenesis and tumor malignant properties. In parallel, an intriguing role of obesity as a major interactive player in the relationship between cancer and OSA was postulated in the following contextual settings: (1) obesity (with or without OSA) is associated with increased risk of some types of cancer (both incidence and aggressiveness), whereas obesity could be protective for others ("obesity paradox"); (2) OSA has been associated with increased risk for some types of cancer (independent of obesity), but not with others; (3) More than 80% of adult patients with OSA are overweight and >50% are obese; (4) both OSA and obesity exhibit oscillations in tissue oxygen tensions in peripheral organs such as adipose tissues. Further understanding these complex relationships become all the more important considering that the prevalence of obesity, cancer and OSA are all increasing worldwide. In parallel, experimental models of OSA provide biological plausibility constructs to the clinical and epidemiological findings, suggesting that the metabolic and inflammatory changes induced by chronic intermittent hypoxia and sleep fragmentation may foster or exacerbate immune and biomechanical alterations of the tumor microenvironment, including the expression of extracellular matrix components facilitating tumor progression.

5.
Arch. bronconeumol. (Ed. impr.) ; 56(1): 18-22, ene. 2020. tab, graf
Artigo em Inglês | IBECS | ID: ibc-186461

RESUMO

Background: Large variation in diagnostic procedures and treatment recommendations may hinder the management of obstructive sleep apnea (OSA) and also compromise correct interpretation of the results of multicenter clinical trials, especially in subjects with non-severe OSA. The aim of this study was to analyze the therapeutic decision-making between different sleep physicians in patients with AHÍ < 40 events/h. Methods: Six experienced senior sleep specialists from different sleep centers of Spain were asked to make a therapeutic decision (CPAP treatment) based on anonymized recordings of patients with suspected OSA that has previously performed a sleep study. The clinical data was shown in an online database and included anthropometric features, clinical questionnaires, comorbidities, physical examination and sleep study results. Intra- and inter-observer decision-making were analyzed by the Fleiss’ Kappa statistics (Kappa). Results: A total of 720 medical decisions were taken to analyze the agreement between sleep professionals. Overall intra-observer evaluation reliability was almost perfect (Kappa = 0.83, 95% CI, 0.75-0.90, p < 0.001). However, overall inter-observer concordance decreased to moderate agreement (Kappa = 0.46, 95% CI, 0.42-0.51, p < 0.001). Nevertheless, it was especially low when considering AHÍ < 15 events/h. Conclusions: This study demonstrates a good intra-observer concordance in the therapeutic decision-making of different sleep physicians treating patients with low/moderate OSA. However, when analyzing inter-observer agreement the results were considerably worse. These findings underline the importance of developing improved consensus management protocols


Introducción: La gran variedad de procedimientos diagnósticos y recomendaciones de tratamiento puede dificultar el manejo del síndrome de apnea obstructiva del sueño (SAHS), y del mismo modo comprometer la correcta interpretación de los resultados de ensayos clínicos multicéntricos, especialmente en pacientes con SAHS no grave. El objetivo de este estudio fue analizar la decisión terapéutica de distintos médicos expertos en sueño en pacientes con el índice de apnea hipopnea < 40 eventos/h. Métodos: Se pidió a seis especialistas con amplia experiencia en sueño de diferentes centros de España que tomaran una decisión terapéutica (terapia de presión positiva continua en las vías respiratorias o CPAP) basada en datos anónimos de los pacientes con sospecha de SAHS en los que previamente se había llevado a cabo un estudio del sueño. Los datos clínicos procedían de una base de datos online e incluían características antropométricas, cuestionarios clínicos, comorbilidades, examen físico y resultados del estudio del sueño. La concordancia intra- e interobservador de la toma de decisiones se analizó mediante el estadístico Fleiss' Kappa (Kappa). Resultados: Se analizaron un total de 720 decisiones médicas para evaluar el consenso entre profesionales del sueño. De manera global, la fiabilidad de la evaluación intraobservador fue casi perfecta (Kappa = 0,83; 95% CI; 0,75 a 0,90, p < 0,001). Sin embargo, la concordancia global interobservador disminuyó hasta alcanzar un grado moderado de consenso (Kappa = 0,46; 95% CI; 0,42 a 0,51, p < 0,001), que fue especialmente bajo cuando se tuvo en cuenta un índice de apnea hipopnea < 15 eventos/h. Conclusiones: Este estudio demuestra una buena concordancia intraobservador en la toma de decisiones terapéuticas de distintos médicos expertos en sueño que tratan a pacientes con SAHS leve o moderado. Sin embargo, los resultados relativos al acuerdo interobservador fueron notablemente peores. Estos hallazgos señalan la importancia de desarrollar mejores protocolos consensuados de manejo


Assuntos
Humanos , Masculino , Adulto , Pessoa de Meia-Idade , Síndromes da Apneia do Sono/terapia , Tomada de Decisão Clínica/métodos , Respiração com Pressão Positiva , Respiração com Pressão Positiva Intermitente/métodos , Análise de Variância , Antropometria , Inquéritos e Questionários , Comorbidade , Consenso , Apneia Obstrutiva do Sono/epidemiologia
6.
Eur Respir J ; 55(2)2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31772002

RESUMO

Oscillometry (also known as the forced oscillation technique) measures the mechanical properties of the respiratory system (upper and intrathoracic airways, lung tissue and chest wall) during quiet tidal breathing, by the application of an oscillating pressure signal (input or forcing signal), most commonly at the mouth. With increased clinical and research use, it is critical that all technical details of the hardware design, signal processing and analyses, and testing protocols are transparent and clearly reported to allow standardisation, comparison and replication of clinical and research studies. Because of this need, an update of the 2003 European Respiratory Society (ERS) technical standards document was produced by an ERS task force of experts who are active in clinical oscillometry research.The aim of the task force was to provide technical recommendations regarding oscillometry measurement including hardware, software, testing protocols and quality control.The main changes in this update, compared with the 2003 ERS task force document are 1) new quality control procedures which reflect use of "within-breath" analysis, and methods of handling artefacts; 2) recommendation to disclose signal processing, quality control, artefact handling and breathing protocols (e.g. number and duration of acquisitions) in reports and publications to allow comparability and replication between devices and laboratories; 3) a summary review of new data to support threshold values for bronchodilator and bronchial challenge tests; and 4) updated list of predicted impedance values in adults and children.

7.
Respirology ; 25(3): 312-320, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31215129

RESUMO

BACKGROUND AND OBJECTIVE: Chronic intermittent hypoxia (CIH) is a major determinant of the cardiovascular morbidity associated with obstructive sleep apnoea (OSA), and the magnitude of CIH impact may be influenced by ageing. Here, we assessed the role of ageing in the early cardiovascular structural remodelling induced by severe CIH in a murine model of OSA. METHODS: Cardiovascular remodelling was assessed in young (2 months old, n = 20) and aged (18 months old, n = 20) C57BL/6 female mice exposed to CIH (20% O2 for 40 s, 5% O2 for 20 s) or normoxia (room air) for 8 weeks (6 h/day). RESULTS: Early vascular remodelling was observed in young mice exposed to CIH as illustrated by intima-media thickening (mean change: 4.6 ± 2.6 µm; P = 0.02), elastin fibre disorganization (mean change: 9.2 ± 4.5%; P = 0.02) and fragmentation (mean change: 2.5 ± 0.8%; P = 0.03), and collagen (mean change: 3.2 ± 0.6%; P = 0.001) and mucopolysaccharide accumulation (mean change: 2.4 ± 0.8%; P = 0.01). In contrast, vascular remodelling was not apparent in aged mice exposed to CIH. Furthermore, left ventricular perivascular fibrosis (mean change: 0.71 ± 0.1; P < 0.001) and hypertrophy (mean change: 0.17 ± 0.1; P = 0.038) were increased by CIH exposure in young mice, but not in aged mice. Principal component analysis identified similar cardiovascular alterations among the young mice exposed to CIH and both older mouse groups, suggesting that CIH induces premature cardiovascular senescence. CONCLUSION: Cardiovascular remodelling induced by severe CIH is affected by the age at which CIH onset occurs, suggesting that the deleterious cardiovascular effects associated with CIH may be more pronounced in younger populations, and such changes resemble chronological age-related declines in cardiovascular structural integrity.

8.
Arch Bronconeumol ; 56(1): 18-22, 2020 Jan.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-30955937

RESUMO

BACKGROUND: Large variation in diagnostic procedures and treatment recommendations may hinder the management of obstructive sleep apnea (OSA) and also compromise correct interpretation of the results of multicenter clinical trials, especially in subjects with non-severe OSA. The aim of this study was to analyze the therapeutic decision-making between different sleep physicians in patients with AHI<40events/h. METHODS: Six experienced senior sleep specialists from different sleep centers of Spain were asked to make a therapeutic decision (CPAP treatment) based on anonymized recordings of patients with suspected OSA that has previously performed a sleep study. The clinical data was shown in an online database and included anthropometric features, clinical questionnaires, comorbidities, physical examination and sleep study results. Intra- and inter-observer decision-making were analyzed by the Fleiss' Kappa statistics (Kappa). RESULTS: A total of 720 medical decisions were taken to analyze the agreement between sleep professionals. Overall intra-observer evaluation reliability was almost perfect (Kappa=0.83, 95% CI, 0.75-0.90, p<0.001). However, overall inter-observer concordance decreased to moderate agreement (Kappa=0.46, 95% CI, 0.42-0.51, p<0.001). Nevertheless, it was especially low when considering AHI<15events/h. CONCLUSIONS: This study demonstrates a good intra-observer concordance in the therapeutic decision-making of different sleep physicians treating patients with low/moderate OSA. However, when analyzing inter-observer agreement the results were considerably worse. These findings underline the importance of developing improved consensus management protocols.

9.
J Neurol ; 2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31832828

RESUMO

OBJECTIVE: To assess the prevalence of obstructive sleep apnea (OSA) in patients with mild-moderate Alzheimer's Disease (AD) and to evaluate cognitive characteristics according to the severity of OSA. METHODS: Patients with mild-moderate AD, recruited prospectively from a cognitive impairment unit, underwent overnight polysomnography. OSA was defined as an apnea-hypopnea index > 5/h. AD severity was assessed using the Mini-Mental State Examination and extensive neuropsychological battery. Epworth Sleepiness Scale and APOE status were analyzed. RESULTS: The cohort included 128 patients with a median [IQR] age of 75.0 [72.0;79.2] years and 57.8% were women. OSA was diagnosed in 116 subjects (90.6%). The distribution of mild, moderate and severe severity of OSA was 29 (22.7%), 37 (28.9%) and 50 (39.1%), respectively. Regarding sleep symptoms, the cohort showed normal values of daytime sleepiness (median EES score 5 [3, 8]), while nycturia (89.1%) and snoring (71.1%) were the most common symptoms. Participants with severe OSA included a higher proportion of older men, were associated with snoring and sedentariness. No significant differences in cognitive assessment were found between patients with and without severe OSA in any of the domains. The prevalence of APOE ε4 was not significantly different between patients with and without severe OSA. CONCLUSION: There was a high prevalence of OSA in patients with mild-moderate AD. OSA was not associated with sleepiness or worse cognitive function. APOE ε4 was not related to the presence or severity of OSA. Further longitudinal studies will be required to evaluate whether OSA impairs cognitive evolution in AD patients.

12.
Sleep ; 2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31782790

RESUMO

Immunosurveillance is compromised in obstructive sleep apnea (OSA) patients as reflected by overexpression of the programmed death cell receptor and its ligand (PD-1/PD-L1) co-inhibitory axis. However, the contributions of intermittent hypoxia (IH) and sleep fragmentation (SF) are unclear. We therefore evaluated the expression of PD-1 and PD-L1 on immune cells from mice subjected to IH or SF, and in human cells exposed to IH, oxidative stress, or both conditions. Six-week-old male C57BL/6J mice were exposed to either IH or SF using previously established in vivo models. Moreover, human peripheral blood mononuclear cells (PBMC) were cultured overnight under normoxia, IH, hydrogen peroxide (H2O2) or both. Murine splenocytes and human PBMC were isolated, and labeled using surface-specific antibodies for flow cytometry analysis. Compared to control mice, IH induced higher expression of PD-L1 on F4/80 cells and of PD-1 on CD4+ and CD8+ T-cells, while no significant changes emerged after SF. In vitro models of IH and oxidative stress showed similar changes for expression of PD-L1 on human monocytes and PD-1 on CD4+ T-cells. Furthermore, H2O2 increased PD-1 expression on CD8+ T-cells, compromising their cytotoxic capacity assessed by perforin expression, similar to IH. No evidence of synergistic effects was apparent. Therefore, PD-1/PD-L1 upregulation reported in OSA patients appears to be preferentially mediated by IH rather than SF.

15.
PLoS One ; 14(10): e0224069, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31647838

RESUMO

INTRODUCTION: Obstructive sleep apnea (OSA) is a prevalent disease associated with significant morbidity and high healthcare costs. Information and communication technology could offer cost-effective management options. OBJECTIVES: To evaluate an out-of-hospital Virtual Sleep Unit (VSU) based on telemedicine to manage all patients with suspected OSA, including those with and without continuous positive airway pressure (CPAP) therapy. METHODS: This was an open randomized controlled trial. Patients with suspected OSA were randomized to hospital routine (HR) or VSU groups to compare the clinical improvement and cost-effectiveness in a non-inferiority analysis. Improvement was assessed by changes in the Quebec Sleep Questionnaire (QSQ), EuroQol (EQ-5D and EQ-VAS), and Epworth Sleepiness Scale (ESS). The follow-up was 3 months. Cost-effectiveness was assessed by a Bayesian analysis based on quality-adjusted life-years (QALYs). RESULTS: The HR group (n: 92; 78% OSA, 57% CPAP) compared with the VSU group (n: 94; 83% OSA, 43% CPAP) showed: CPAP compliance was similar in both groups, the QSQ social interactions domain improved significantly more in the HR group whereas the EQ-VAS improved more in the VSU group. Total and OSA-related costs were lower in the VSU group than the HR. The Bayesian cost-effectiveness analysis showed that VSU was cost-effective for a wide range of willingness to pay for QALYs. CONCLUSIONS: The VSU offered a cost-effective means of improving QALYs than HR. However, the assessment of its clinical improvement was influenced by the choice of the questionnaire; hence, additional measurements of clinical improvement are needed. Our findings indicate that VSU could help with the management of many patients, irrespective of CPAP use.

17.
Front Physiol ; 10: 1047, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31474879

RESUMO

Increasing evidence shows that lungs can be damaged by inhalation of nanoparticles (NPs) at environmental and occupational settings. Recent findings have associated the exposure to iron oxide (Fe2O3) and titanium dioxide (TiO2) - NPs widely used in biomedical and clinical research - with pulmonary oxidative stress and inflammation. Although changes on cellular mechanics could contribute to pulmonary inflammation, there is no information regarding the effects of Fe2O3 and TiO2 on alveolar epithelial cell biomechanics. The aim was to investigate the NPs-induced biomechanical effects in terms of cell stiffness and traction forces exerted by human alveolar epithelial cells. Cell Young's modulus (E) measured by atomic force microscopy in alveolar epithelial cells significantly decreased after exposure to Fe2O3 and TiO2 (∼28 and ∼25%, respectively) compared to control conditions. Moreover, both NPs induced a similar reduction in the traction forces exerted by the alveolar epithelial cells in comparison to the control conditions. Accordingly, immunofluorescence images revealed a reduction of actomyosin stress fibers in response to the exposure to NPs. However, no inflammatory response was detected. In conclusion, an acute exposure of epithelial pulmonary cells to Fe2O3 and TiO2 NPs, which was mild since it was non-cytotoxic and did not induce inflammation, modified cell biomechanical properties which could be translated into damage of the epithelial barrier integrity, suggesting that mild environmental inhalation of Fe2O3 and TiO2 NPs could not be innocuous.

18.
Sci Rep ; 9(1): 11443, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31391506

RESUMO

Obstructive sleep apnea syndrome (OSA) promotes aortic dilatation, increased stiffness and accelerated atherosclerosis, but the mechanisms of vascular remodelling are not known. We aimed to assess vascular remodelling, its mechanisms, and the effect of mesenchymal stem cells (MSC) infusions in a clinically relevant rat model of chronic OSA involving recurrent airway obstructions leading thoracic pressure swings and intermittent hypoxia/hypercapnia (OSA-rats). Another group of rats were placed in the same setup without air obstructions (Sham-rats) and were considered controls. Our study demonstrates that chronic, non-invasive repetitive airway obstructions mimicking OSA promote remarkable structural changes of the descending thoracic aorta such as eccentric aortic hypertrophy due to an increased wall thickness and lumen diameter, an increase in the number of elastin fibers which, in contrast, get ruptured, but no changes in tunica media fibrosis. As putative molecular mechanisms of the OSA-induced vascular changes we identified an increase in reactive oxygen species and renin-angiotensin system markers and an imbalance in oxide nitric synthesis. Our results also indicate that MSC infusion blunts the OSA-related vascular changes, most probably due to their anti-inflammatory properties.

19.
J Appl Physiol (1985) ; 127(3): 745-752, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31369330

RESUMO

Obstructive sleep apnea (OSA), characterized by events of hypoxia-reoxygenation, is highly prevalent in pregnancy, negatively affecting the gestation process and particularly the fetus. Whether the consequences of OSA for the fetus and offspring are mainly caused by systemic alterations in the mother or by a direct effect of intermittent hypoxia in the fetus is unknown. In fact, how apnea-induced hypoxemic swings in OSA are transmitted across the placenta remains to be investigated. The aim of this study was to test the hypothesis, based on a theoretical background on the damping effect of oxygen transfer in the placenta, that oxygen partial pressure (Po2) swings resulting from obstructive apneas mimicking OSA are mitigated in the fetal circulation. To this end, four anesthetized ewes close to term pregnancy were subjected to obstructive apneas consisting of 25-s airway obstructions. Real-time Po2 was measured in the maternal carotid artery and in the umbilical vein with fast-response fiber-optic oxygen sensors. The amplitudes of Po2 swings in the umbilical vein were considerably smaller [3.1 ± 1.0 vs. 21.0 ± 6.1 mmHg (mean ± SE); P < 0.05]. Corresponding estimated swings in fetal and maternal oxyhemoglobin saturation tracked Po2 swings. This study provides novel insights into fetal oxygenation in a model of gestational OSA and highlights the importance of further understanding the impact of sleep-disordered breathing on fetal and offspring development.NEW & NOTEWORTHY This study in an airway obstruction sheep model of gestational sleep apnea provides novel data on how swings in oxygen partial pressure (Po2) translate from maternal to fetal blood. Real-time simultaneous measurement of Po2 in maternal artery and in umbilical vein shows that placenta transfer attenuates the magnitude of oxygenation swings. These data prompt further investigation of the extent to which maternal apneas could induce similar direct oxidative stress in fetal and maternal tissues.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA