Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Genet ; 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32239398

RESUMO

Aiming to uncover a shared genetic basis of abdominal obesity and osteoporosis, we performed a bivariate GWAS meta-analysis of femoral neck BMD (FNK-BMD) and trunk fat mass adjusted by trunk lean mass (TFMadj) in 11,496 subjects from 6 samples, followed by in silico replication in the large-scale UK Biobank (UKB) cohort. A series of functional investigations were conducted on the identified variants. Bivariate GWAS meta-analysis identified two novel pleiotropic loci 12q15 (lead SNP rs73134637, p = 3.45 × 10-7) and 10p14 (lead SNP rs2892347, p = 2.63 × 10-7) that were suggestively associated and that were replicated in the analyses of related traits in the UKB sample (osteoporosis p = 0.06 and 0.02, BMI p = 0.03 and 4.61 × 10-3, N up to 499,520). Cis-eQTL analysis demonstrated that allele C at rs73134637 was positively associated with IFNG expression in whole blood (N = 369, p = 0.04), and allele A at rs11254759 (10p14, p = 9.49 × 10-7) was negatively associated with PRKCQ expression in visceral adipose tissue (N = 313, p = 0.04) and in lymphocytes (N = 117, p = 0.03). As a proof-of-principle experiment, the function of rs11254759, which is 235 kb 5'-upstream from PRKCQ gene, was investigated by the dual-luciferase reporter assay, which clearly showed that the haplotype carrying rs11254759 regulated PRKCQ expression by upregulating PRKCQ promoter activity (p = 4.60 × 10-7) in an allelic specific manner. Mouse model analysis showed that heterozygous PRKCQ deficient mice presented decreased fat mass compared to wild-type control mice (p = 3.30 × 10-3). Mendelian randomization analysis demonstrated that both FNK-BMD and TFMadj were causally associated with fracture risk (p = 1.26 × 10-23 and 1.18 × 10-11). Our findings may provide useful insights into the genetic association between osteoporosis and abdominal obesity.

3.
Skelet Muscle ; 9(1): 28, 2019 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-31757224

RESUMO

BACKGROUND: Low lean body mass is the most important predictor of sarcopenia with strong genetic background. The aim of this study was to uncover genetic factors underlying lean mass development. MATERIALS AND METHODS: We performed a genome-wide association study (GWAS) of fat-adjusted leg lean mass in the Framingham Heart Study (FHS, N = 6587), and replicated in the Women's Health Initiative-African American sub-sample (WHI-AA, N = 847) and the Kansas City Osteoporosis Study (KCOS, N = 2219). We also cross-validated significant variants in the publicly available body mass index (BMI) summary results (N ~ 700,000). We then performed a series of functional investigations on the identified variants. RESULTS: Four correlated SNPs at 6p21.1 were identified at the genome-wide significance (GWS, α = 5.0 × 10-8) level in the discovery FHS sample (rs551145, rs524533, rs571770, and rs545970, p = 3.40-9.77 × 10-9), and were successfully replicated in both the WHI-AA and the KCOS samples (one-sided p = 1.61 × 10-3-0.04). They were further cross-validated by the large-scale BMI summary results (p = 7.0-9.8 × 10-3). Cis-eQTL analyses associated these SNPs with the NFKBIE gene expression. Electrophoresis mobility shift assay (EMSA) in mouse C2C12 myoblast cells implied that rs524533 and rs571770 were bound to an unknown transcription factor in an allelic specific manner, while rs551145 and rs545970 did not. Dual-luciferase reporter assay revealed that both rs524533 and rs571770 downregulated luciferase expression by repressing promoter activity. Moreover, the regulation pattern was allelic specific, strengthening the evidence towards their differential regulatory effects. CONCLUSIONS: Through a large-scale GWAS followed by a series of functional investigations, we identified 2 correlated functional variants at 6p21.1 associated with leg lean mass. Our findings not only enhanced our understanding of molecular basis of lean mass development but also provided useful candidate genes for further functional studies.


Assuntos
Cromossomos Humanos Par 6/genética , Polimorfismo de Nucleotídeo Único , Sarcopenia/genética , Magreza/genética , Idoso , Animais , Índice de Massa Corporal , Linhagem Celular , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Proteínas I-kappa B/genética , Desequilíbrio de Ligação , Masculino , Camundongos , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas/genética , Locos de Características Quantitativas , Sarcopenia/patologia , Magreza/patologia
4.
Front Genet ; 10: 947, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681408

RESUMO

As an important trait at birth, infant head circumference (HC) is associated with a variety of intelligence- and mental-related conditions. Despite being dominated by genetics, the mechanism underlying the variation of HC is poorly understood. Aiming to uncover the genetic basis of HC, we performed a genome-wide joint association analysis by integrating the genome-wide association summary statistics of HC with that of its two related traits, birth length and birth weight, using a recently developed integrative method, multitrait analysis of genome-wide association (MTAG), and performed in silico replication in an independent sample of intracranial volume (N = 26,577). We then conducted a series of bioinformatic investigations on the identified loci. Combining the evidence from both the MTAG analysis and the in silico replication, we identified three novel loci at the genome-wide significance level (α = 5.0 × 10-8): 3q23 [lead single nucleotide polymorphism (SNP) rs9846396, p MTAG = 3.35 × 10-8, p replication = 0.01], 7p15.3 (rs12534093, p MTAG = 2.00 × 10-8, p replication = 0.004), and 9q33.3 (rs7048271 p MTAG = 9.23 × 10-10, p replication = 1.14 × 10-4). Each of the three lead SNPs was associated with at least one of eight brain-related traits including intelligence and educational attainment. Credible risk variants, defined as those SNPs located within 500 kb of the lead SNP and with p values within two orders of magnitude of the lead SNP, were enriched in DNase I hypersensitive site region in brain. Nine candidate genes were prioritized at the three novel loci using multiple sources of information. Gene set enrichment analysis identified one associated pathway GO:0048009, which participates in the development of nervous system. Our findings provide useful insights into the genetic basis of HC and the relationship between brain growth and mental health.

5.
Bone ; 127: 37-43, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31158506

RESUMO

The level of serum lipids is associated with bone mineral density (BMD), an important skeletal trait. Yet the causality has not been determined. Here we performed a Mendelian randomization (MR) analysis to test potential causal links between BMD and lipid profile, i.e., low-density lipoprotein cholesterol (LDC-c), total cholesterol (TC), triglyceride (TG) and high-density lipoprotein cholesterol (HDL-c). We observed causal effect of LDL-c, TC and TG to BMD, and reversely the effect of BMD to HDL-c. We further explored the effect of body mass index (BMI) in these causalities and found that the effect of LDL-c, TC and TG to BMD is independent of BMI. Our findings provided useful information in the clinical relevance of blood lipids on BMD variation and osteoporosis risk.

6.
J Bone Miner Res ; 34(6): 1086-1094, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30690781

RESUMO

Bone mineral density (BMD) at various skeletal sites have shared genetic determinants. In the present study, aiming to identify shared loci associated with BMD, we conducted a joint association study of a genomewide association study (GWAS) and a meta-analysis of BMD at different skeletal sites: (i) a single GWAS of heel BMD in 142,487 individuals from the UK Biobank, and (ii) a meta-analysis of 30 GWASs of total body (TB) BMD in 66,628 individuals from the Genetic Factors for Osteoporosis (GEFOS) Consortium. The genetic correlation coefficient of the two traits was estimated to be 0.57. We performed joint association analysis with a recently developed statistical method multi-trait analysis of GWAS (MTAG) to account for trait heterogeneity and sample overlap. The joint association analysis combining samples of up to 209,115 individuals identified 18 novel loci associated with BMD at the genomewide significance level (α = 5.0 × 10-8 ), explaining an additional 0.43% and 0.60% of heel-BMD and TB-BMD heritability, respectively. The vast majority of the identified lead SNPs or their proxies exerted local expression quantitative trait loci (cis-eQTL) activity. Credible risk variants, defined as those SNPs located within 500 kilobases (kb) of the lead SNP and with p values within two orders of magnitude of the lead SNP, were enriched in transcription factor binding sites (p = 3.58 × 10-4 ) and coding regions (p = 5.71 × 10-4 ). Fifty-six candidate genes were prioritized at these novel loci using multiple sources of information, including several genes being previously reported to play a role in bone biology but not reported in previous GWASs (PPARG, FBN2, DEF6, TNFRSF19, and NFE2L1). One newly identified gene, SCMH1, was shown to upregulate the expression of several bone biomarkers, including alkaline phosphatase (ALP), collagen type 1 (COL-I), osteocalcin (OCN), osteopontin (OPN), and runt-related transcription factor 2 (RUNX2), in mouse osteoblastic MC3T3-E1 cells, highlighting its regulatory role in bone formation. Our results may provide useful candidate genes for future functional investigations. © 2019 American Society for Bone and Mineral Research.

7.
Int J Artif Organs ; 35(12): 1070-6, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23065875

RESUMO

OBJECTIVE: To treat acute carbon monoxide poisoning (ACOP) with extracorporeal membrane trioxygenation (ECMO3), and to determine the efficacy and safety of ECMO3. METHOD: Thirty-two New Zealand white rabbits were divided randomly into four groups including ECMO3 group (G1-ECMO3), oxygen treatment group (G2-FIO2), untreated ACOP group (G3-ACOP), and control group (G4-control). Rabbits in the first three groups were intraperitoneally injected with 99.99% CO at a dosage of 200 ml/kg, and those in the control group were treated with placebo. The dynamic changes in carboxyhemoglobin (COHb) concentration, blood oxygen saturation (SO2) level, base excess of blood (BE-B) as well as the vital signs of the rabbits were monitored. RESULTS: All the experimental rabbits had significantly higher levels of COHb (p = 0.000<0.05) than those in the control group after 30 min of CO injection with poisoning reactions. The respiration and heart rate of the rabbits in the ECMO3 group and FIO2 group were recovered to a level close to those of the rabbits in the control group by the end of the treatment, and they were significantly lower than those in the ACOP group (p = 0.000, <0.05). The COHb levels of rabbits in the G1-ECMO3 group were significantly lower than those in the G2-FIO2 and the G3-ACOP groups (F = 42.799, p = 0.000), and were similar to those in the CONTROL GROUP. AFTER 0.5 H OF TREATMENT, THE SO2 AND BE-B LEVELS OF RABBITS IN THE G1-ECMO3 AND THE G2-FIO2 GROUPS WERE HIGHER THAN THOSE IN THE G3-ACOP GROUP (P<0.05, P = 0.000<0.05). CONCLUSIONS: ECMO3 treatment effectively lowered the COHb levels, increased SO2 levels, and cured acid poisoning, making it a safe and promising ACOP treatment strategy.


Assuntos
Intoxicação por Monóxido de Carbono/terapia , Oxigenação por Membrana Extracorpórea/métodos , Animais , Gasometria , Intoxicação por Monóxido de Carbono/sangue , Carboxihemoglobina/metabolismo , Frequência Cardíaca/fisiologia , Coelhos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA