Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 189: 608-612, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28886507

RESUMO

A plasmon induced carrier movement enhanced mechanism of surface-enhanced Raman scattering (SERS) was investigated using a charge-transfer (CT) enhancement mechanism. Here, we designed a strategy to study SERS in Au@Cu2O nanoshell nanoparticles with different shell thicknesses. Among the plasmonically coupled nanostructures, Au spheres with Cu2O shells have been of special interest due to their ultrastrong electromagnetic fields and controllable carrier transfer properties, which are useful for SERS. Au@Cu2O nanoshell nanoparticles (NPs) with shell thicknesses of 48-56nm are synthesized that exhibit high SERS activity. This high activity originates from plasmonic-induced carrier transfer from Au@Cu2O to 4-mercaptobenzoic acid (MBA). The CT transition from the valence band (VB) of Cu2O to the second excited π-π* transition of MBA, and is of b2 electronic symmetry, which was enhanced significantly. The Herzberg-Teller selection rules were employed to predict the observed enhanced b2 symmetry modes. The system constructed in this study combines the long-range electromagnetic effect of Au NPs, localized surface plasmon resonance (LSPR) of the Au@Cu2O nanoshell, and the CT contribution to assist in understanding the SERS mechanism based on LSPR-induced carrier movement in metal/semiconductor nanocomposites.

2.
J Comput Chem ; 32(4): 658-67, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20845421

RESUMO

Stimulated by the recent isolation and characterization of C56Cl10 chlorofullerene (Tan et al., J Am Chem Soc 2008, 130, 15240), we perform a systematic study on the geometrical structures, thermochemistry, and electronic and optical properties of C56X10 (X = H, F, and Cl) on the basis of density functional theory (DFT). Compared with pristine C56, the equatorial carbon atoms in C56X10 are saturated by X atoms and change to sp³ hybridization to release the large local strains. The addition reactions C56 + 5X2 --> C56X10 are highly exothermic, and the optimal temperature for synthesizing C56X10 should be ranged between 500 and 1000 K. By combining 10 X atoms at the abutting pentagon vertexes and active sites, C56Cl10 molecules exhibit large energy gaps between the highest occupied and lowest unoccupied molecular orbitals (from 2.84 to 3.00 eV), showing high chemical stabilities. The C56F10 and C56Cl10 could be excellent electron acceptors for potential photonic/photovoltaic applications in consequence of their large vertical electron affinities. The density of states is also calculated, which suggest that the frontier molecular orbitals of C56X10 are mainly from the carbon orbitals of two separate annulene subunits, and the contributions derived from X atoms are secondary. In addition, the ultraviolet-visible spectra and second-order hyperpolarizabilities of C56X10 are calculated by means of time-dependent DFT and finite field approach, respectively. Both the average static linear polarizability <α> and second-order hyperpolarizability <γ> of these compounds are larger than those of C60 due to lower symmetric structures and high delocalization of π electron density on the two separate annulene subunits.


Assuntos
Fulerenos/química , Elétrons , Modelos Moleculares , Fenômenos Ópticos , Teoria Quântica , Espectrofotometria
3.
J Comput Chem ; 31(14): 2650-7, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20740565

RESUMO

Electronic structures and nonlinear optical properties of two highly deformed halofullerenes C(3v) C(60)F(18) and D(3d) C(60)Cl(30) have been systematically studied by means of density functional theory. The large energy gaps (3.62 and 2.61 eV) between the highest occupied and lowest unoccupied molecular orbitals (HOMOs and LUMOs) and the strong aromatic character (with nucleus-independent chemical shifts varying from -15.08 to -23.71 ppm) of C(60)F(18) and C(60)Cl(30) indicate their high stabilities. Further investigations of electronic property show that C(60)F(18) and C(60)Cl(30) could be excellent electron acceptors for potential photonic/photovoltaic applications in consequence of their large vertical electron affinities. The density of states and frontier molecular orbitals are also calculated, which present that HOMOs and LUMOs are mainly distributed in the tortoise shell subunit of C(60)F(18) and the aromatic [18] trannulene ring of C(60)Cl(30), and the influence from halogen atoms is secondary. In addition, the static linear polarizability and second-order hyperpolarizability of C(60)F(18) and C(60)Cl(30) are calculated using finite-field approach. The values of and for C(60)F(18) and C(60)Cl(30) molecules are significantly larger than those of C(60) because of their lower symmetric structures and high delocalization of pi electrons.


Assuntos
Elétrons , Fulerenos/química , Óptica e Fotônica , Simulação de Dinâmica Molecular , Teoria Quântica
4.
J Mol Graph Model ; 28(8): 891-8, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20430661

RESUMO

A systematic study on the geometrical structures and electronic properties of C(68)X(4) (X=H, F, and Cl) fullerene compounds has been carried out on the basis of density functional theory. In all classical C(68)X(4) isomers with two adjacent pentagons and one quasifullerene isomer [C(s):C(68)(f)] containing a heptagon in the framework, the C(s):0064 isomers are most favorable in energy. The addition reaction energies of C(68)X(4) (C(s):0064) are high exothermic, and C(68)F(4) is more thermodynamically accessible. The C(68)X(4) (C(s):0064) possess strong aromatic character, with nucleus independent chemical shifts ranging from -22.0 to -26.1 ppm. Further investigations on electronic properties indicate that C(68)F(4) and C(68)Cl(4) could be excellent electron-acceptors for potential photonic/photovoltaic applications in consequence of their large vertical electron affinities (3.29 and 3.15 eV, respectively). The Mulliken charge populations and partial density of states are also calculated, which show that decorating C(68) fullerene with various X atoms will cause remarkably different charge distributions in C(68)X(4) (C(s):0064) and affect their electronic properties distinctly. Finally, the infrared spectra of the most stable C(68)X(4) (C(s):0064) molecules are simulated to assist further experimental characterization.


Assuntos
Fulerenos/química , Modelos Moleculares , Algoritmos , Eletroquímica , Estrutura Molecular , Termodinâmica
5.
J Chem Phys ; 130(12): 124705, 2009 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-19334870

RESUMO

Stimulated by the mass spectroscopic observation of the metallofullerene Ca@C(44), we have performed a systematic investigation to search for the most stable isomer using HF/3-21G approximately LanL2DZ, HF/6-31+G(d), B3LYP/6-31+G(d), and MP2/6-31+G(d)//B3LYP/6-31+G(d) methods. The Ca@C(44) (D(2):53) isomer with eight adjacent pentagons in the fullerene framework is predicted to possess the lowest energy. The thermodynamics stability explorations of Ca@C(44) isomers at different temperatures show that Ca@C(44) (D(2):53) is the most thermodynamically stable in the temperature range of absolute zero to 4000 K. The encapsulation of Ca atom in C(44) fullerene is exothermic, and the electronic structure of Ca@C(44) (D(2):53) can be described formally as Ca(2+)@C(44) (2-). Further analysis on the frontier molecular orbitals and density of states of Ca@C(44) (D(2):53) suggests that both highest occupied molecular orbital and lowest unoccupied molecular orbital are carbonlike with low Ca character, and the carbon cage possesses high chemical activity. In addition, the vibrational spectrum of Ca@C(44) (D(2):53) has been simulated and analyzed to gain an insight into the metal-cage vibrations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA