Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
ACS Synth Biol ; 12(2): 460-470, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36649530

RESUMO

Yeast surface display is an appealing technique for constructing multienzyme cascades. This technique is commonly achieved using a scaffold for the ordered arrangement of various enzymes. However, this method is typically complicated because scaffold use may engender extra metabolic burden on the cell host. Here, we established a direct yeast surface codisplay strategy by employing two complementary anchor motifs, Agα1 and Pir1. These motifs allow for the codisplay of sequential uridine diphosphate-glycosyltransferase (UGT) and sucrose synthase (SUS) on the surface of Pichia pastoris (syn. Komagataella phaffii) for the glycosylation of natural products. We manipulated the displayed stoichiometry, amount, and assembly order of UGT and SUS by coupling them with anchor motifs. Furthermore, their effect on enzyme activity was thoroughly investigated. The surface-codisplayed strain UGT-Pir-SUS-Agα exhibited greater thermostability than the single-displayed strains and their free counterparts. Moreover, the strain UGT-Pir-SUS-Agα was successfully applied to glycyrrhetinic acid (GA) glycosylation to produce GA-3-O-Glc, with sucrose being the sugar donor in this process. This generated 7.5- to 20- and 5.3-fold higher GA-3-O-Glc concentration compared with the free counterparts (enzyme mass loading of 20-fold in excess) and mixed single-displayed strains of UGT-Agα and SUS-Pir, respectively. This increase was due to the improved biochemical properties and substrate channeling effect of strain UGT-Pir-SUS-Agα. This controllable direct surface codisplay strategy, based on complementary anchor motifs, is readily extendable to other enzyme cascades.


Assuntos
Produtos Biológicos , Glicosilação , Produtos Biológicos/metabolismo , Glicosiltransferases/metabolismo , Pichia/genética , Pichia/metabolismo
2.
J Agric Food Chem ; 71(5): 2211-2233, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36716399

RESUMO

Prenylated aromatic natural products (PANPs) have received much attention due to their biomedical benefits for human health. The prenylation of aromatic natural products (ANPs), which is mainly catalyzed by aromatic prenyltransferases (aPTs), contributes significantly to their structural and functional diversity by providing higher lipophilicity and enhanced bioactivity. aPTs are widely distributed in bacteria, fungi, animals, and plants and play a key role in the regiospecific prenylation of ANPs. Recent studies have greatly advanced our understanding of the characteristics and application of aPTs. In this review, we comment on research progress regarding sources, evolutionary relationships, structural features, reaction mechanism, engineering modification, and application of aPTs. Particular emphasis is also placed on recent advances, challenges, and prospects about applications of aPTs in microbial cell factories for producing PANPs. Generally, this review could provide guidance for using aPTs as robust biocatalytic tools to produce various PANPs with high efficiency.


Assuntos
Produtos Biológicos , Dimetilaliltranstransferase , Humanos , Bactérias/metabolismo , Produtos Biológicos/química , Dimetilaliltranstransferase/metabolismo , Fungos/metabolismo , Prenilação , Especificidade por Substrato
3.
Biomed Res Int ; 2023: 2763320, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36647546

RESUMO

Objective: Ischemia reperfusion injury greatly damages liver function and deteriorates the prognosis of patients undergoing partial hepatectomy. This study is to compare the protective efficiency of direct and remote ischemic preconditioning (DIPC and RIPC) on ischemia reperfusion injury of the liver in patients undergoing partial hepatectomy. Methods: 90 patients scheduled for partial hepatectomy were enrolled and randomly divided into control (n = 30), DIPC (n = 30), and RIPC (n = 30) groups. Baseline and surgery characteristics were collected, and ischemic preconditioning methods were carried out. Intraoperative hemodynamics, liver function and liver reserve capacity, oxidative stress, and inflammatory responses were measured, and the incidence of postoperative adverse reactions was calculated finally. Results: 10 patients were excluded from the study, and finally, the eligible patients in three groups were 27, 28, and 25, separately. No significant differences were observed in baseline and surgery characteristics among the three groups. SBP and DBP were significantly higher after hepatic portal vein occlusion while they were significantly lower after surgery in the DIPC and RIPC groups compared with that in the control group, SBP and DBP were of great fluctuation at different time points in the control group while they showed much more stabilization in the DIPC and RIPC groups. ALT, AST, and TBIL were significantly decreased on days 1, 3, and 5 after surgery, and ICG R15 was significantly decreased while ICG K value and EHBF were significantly increased on day 1 after surgery in the DIPC and RIPC groups compared with that in the control group. Moreover, antioxidant enzyme SOD was increased, and inflammatory factors TNF-α and IL-1ß were decreased 24 hours after surgery in the DIPC and RIPC groups compared with that in the control group. DIPC and RIPC also decreased hospital stays and the incidence of nausea, vomiting, and hypertension. Conclusion: DIPC and RIPC both alleviated ischemia reperfusion injury of the liver and reduced perioperative complications with similar protective efficiency in patients undergoing partial hepatectomy.


Assuntos
Precondicionamento Isquêmico , Hepatopatias , Traumatismo por Reperfusão , Humanos , Hepatectomia/efeitos adversos , Precondicionamento Isquêmico/métodos , Traumatismo por Reperfusão/prevenção & controle
4.
ACS Synth Biol ; 11(11): 3865-3873, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36321874

RESUMO

Plant-derived cytochrome P450-dependent flavonoid 3'-hydroxylases are the rate-limiting enzymes in flavonoid biosynthesis. In this study, the large component (HpaB) of a prokaryotic 4-hydroxyphenylacetate (4-HPA) 3-hydroxylase was engineered for efficient 3'-hydroxylation of naringenin. First, we selected four HpaBs through database search and phylogenetic analysis and compared their catalytic activities toward 4-HPA and naringenin. HpaB from Rhodococcus opacus B-4 (RoHpaB) showed better preference toward naringenin. To elucidate the underlying mechanism, we analyzed the structural differences of HpaBs through homologous modeling, molecular docking, and molecular dynamics simulation, and the substrate preference of RoHpaB was mainly attributed to the shorter chain length of loop 212-222 and the larger substrate binding pocket. RoHpaB was further engineered by alanine scanning and structural replacement, and the RoHpaBY215A variant was obtained, whose catalytic efficiency (kcat/Km) toward naringenin is 25.3 times higher than that of RoHpaB. In addition, RoHpaBY215A also showed significantly improved activity toward flavonoids apigenin and kaempferol. This work opens the possibility of using engineered HpaB as a versatile hydroxylase to produce functionalized flavonoids.


Assuntos
Sistema Enzimático do Citocromo P-450 , Flavonoides , Hidroxilação , Flavonoides/metabolismo , Simulação de Acoplamento Molecular , Filogenia , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo
5.
Radiat Oncol ; 17(1): 189, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36397078

RESUMO

OBJECTIVE: This study introduces innovative strategies, the doublet regimen of concurrent chemoradiotherapy, to ensure longer survival for locoregionally advanced nasopharyngeal carcinoma. METHODS: We retrospectively reviewed 104 locoregionally advanced nasopharyngeal carcinoma patients who underwent taxane combined platinum-based concurrent chemoradiotherapy in our center between January 2013 and December 2018. All statistical analyses were performed using the Kaplan-Meier method (SPSS 23.0). Different groups were compared with the Wilcoxon rank-sum test. RESULTS: Ultimately, 104 patients were selected for this study, including 18 and 86 who received either concurrent chemoradiation therapy alone or concurrent chemoradiation therapy plus adjuvant chemotherapy, respectively. The median follow-up time for progression free survival was 53.0 months (IQR 48.5-57.5). The 3-years progression-free survival (PFS), overall survival (OS), local-regional recurrence-free survival (LRRFS) and distant metastasis-free survival (DMFS) rates of the doublet regimen of concurrent chemotherapy for locoregionally advanced nasopharyngeal carcinoma were 85.9%, 96.0%, 96.0% and 90.8%, respectively. Additionally, we analyzed the subgroups and found that the 3-years PFS, OS, LRRFS and DMFS rates for stage III versus stage IVa were 97.8% versus 75.5% (P = 0.000), 100% versus 92.5% (P = 0.004), 100% versus 92.4% (P = 0.015) and 97.8% versus 82.8% (P = 0.002), respectively. During concurrent chemotherapy, acute chemotherapy adverse events of grade 3 or 4 was only 18.3%. Leukopenia was the most common acute chemotherapy adverse event (in 10 patients [9.6%]), followed by neutropenia (in 8 patients [7.6%]). CONCLUSION: The doublet regimen of taxane plus platinum concurrent chemoradiotherapy resulted in improved long-term survival of locoregionally advanced nasopharyngeal carcinoma patients, especially for local control rate and warrants further prospective evaluation.


Assuntos
Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/tratamento farmacológico , Estudos Retrospectivos , Neoplasias Nasofaríngeas/patologia , Cisplatino/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Quimiorradioterapia/métodos , Taxoides
6.
World J Stem Cells ; 14(9): 714-728, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36188116

RESUMO

BACKGROUND: The effect of hypoxia on mesenchymal stem cells (MSCs) is an emerging topic in MSC biology. Although long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs) are reported to play a critical role in regulating the biological characteristics of MSCs, their specific expression and co-expression profiles in human placenta-derived MSCs (hP-MSCs) under hypoxia and the underlying mech anisms of lncRNAs in hP-MSC biology are unknown. AIM: To reveal the specific expression profiles of lncRNAs in hP-MSCs under hypoxia and initially explored the possible mechanism of lncRNAs on hP-MSC biology. METHODS: Here, we used a multigas incubator (92.5% N2, 5% CO2, and 2.5% O2) to mimic the hypoxia condition and observed that hypoxic culture significantly promoted the proliferation potential of hP-MSCs. RNA sequencing technology was applied to identify the exact expression profiles of lncRNAs and mRNAs under hypoxia. RESULTS: We identified 289 differentially expressed lncRNAs and 240 differentially expressed mRNAs between the hypoxia and normoxia groups. Among them, the lncRNA SNHG16 was upregulated under hypoxia, which was also validated by reverse transcription-polymerase chain reaction. SNHG16 was confirmed to affect hP-MSC proliferation rates using a SNHG16 knockdown model. SNHG16 overexpression could significantly enhance the proliferation capacity of hP-MSCs, activate the PI3K/AKT pathway, and upregulate the expression of cell cycle-related proteins. CONCLUSION: Our results revealed the specific expression characteristics of lncRNAs and mRNAs in hypoxia-cultured hP-MSCs and that lncRNA SNHG16 can promote hP-MSC proliferation through the PI3K/AKT pathway.

7.
Crit Rev Biotechnol ; : 1-15, 2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36154438

RESUMO

Glycosides are widely used in many fields due to their favorable biological activity. The traditional plant extractions and chemical methods for glycosides production are limited by environmentally unfriendly, laborious protecting group strategies and low yields. Alternatively, enzymatic glycosylation has drawn special attention due to its mild reaction conditions, high catalytic efficiency, and specific stereo-/regioselectivity. Glycosyltransferases (GTs) and retaining glycoside hydrolases (rGHs) are two major enzymes for the formation of glycosidic linkages. Therein GTs generally use nucleotide phosphate activated donors. In contrast, GHs can use broader simple and affordable glycosyl donors, showing great potential in industrial applications. However, most rGHs mainly show hydrolysis activity and only a few rGHs, namely non-Leloir transglycosylases (TGs), innately present strong transglycosylation activities. To address this problem, various strategies have recently been developed to successfully tailor rGHs to alleviate their hydrolysis activity and obtain the engineered TGs. This review summarizes the current modification strategies in TGs engineering, with a special focus on transglycosylation activity enhancement, substrate specificity modulation, and product polymerization degree distribution, which provides a reference for exploiting the transglycosylation potentials of rGHs.

8.
Cell Metab ; 34(7): 1004-1022.e8, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35793654

RESUMO

Chronic endoplasmic reticulum (ER) stress and sustained activation of unfolded protein response (UPR) signaling contribute to the development of type 2 diabetes in obesity. UPR signaling is a complex signaling pathway, which is still being explored in many different cellular processes. Here, we demonstrate that FK506-binding protein 11 (FKBP11), which is transcriptionally regulated by XBP1s, is severely reduced in the livers of obese mice. Restoring hepatic FKBP11 expression in obese mice initiates an atypical UPR signaling pathway marked by rewiring of PERK signaling toward NRF2, away from the eIF2α-ATF4 axis of the UPR. This alteration in UPR signaling establishes glucose homeostasis without changing hepatic ER stress, food consumption, or body weight. We conclude that ER stress during obesity can be beneficially rewired to promote glucose homeostasis. These findings may uncover possible new avenues in the development of novel approaches to treat diseases marked by ER stress.


Assuntos
Diabetes Mellitus Tipo 2 , Glucose , Obesidade , Proteínas de Ligação a Tacrolimo , Resposta a Proteínas não Dobradas , Animais , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Homeostase , Camundongos , Camundongos Obesos , Obesidade/metabolismo , Transdução de Sinais , Proteínas de Ligação a Tacrolimo/metabolismo
9.
Biomed Res Int ; 2022: 3749306, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35872838

RESUMO

Background: Cancers of digestive system have high case-fatality rate. It is important to find more appropriate methods in diagnosing and predicting gastrointestinal malignances. And thrombospondin-2 (TSP-2) was reported to have the functions, although results were not identical. So we performed this meta-analysis to clarify the significance of TSP-2 in this area. Methods: PubMed, Embase, Web of Science, Cochrane Library, and Clinicaltrial.gov were searched for relevant studies. Data were extracted from these involved records. For the meta-analysis of diagnostic test, bivariate mixed effect model was used to estimate diagnostic accuracy. For prognosis part, HRs and their 95% CIs were pooled to compare the overall survival (OS) and disease-free survival (DFS) between patients with high TSP-2 and low TSP-2. Results: Nine records were eligible for the analysis of diagnostic test. Pooled results were as follows: sensitivity 0.60 (0.52, 0.68), specificity 0.96 (0.91, 0.98), positive likelihood ratio (PLR) 15.4 (7.3, 32.2), negative likelihood ratio (NLR) 0.42 (0.34, 0.50), and diagnostic odds ratio (DOR) 37 (18, 76). While in prognosis part, 10 articles were included. Patients with increased TSP-2 had shorter OS (HR = 1.64, 95% CI = 1.21-2.22); however, no difference was found in DFS between TSP-2 high and low groups (HR = 1.44, 95% CI = 0.28-7.33). Conclusions: TSP-2, as a diagnostic marker, has a high specificity but a moderate sensitivity. Meanwhile, it plays a role in predicting OS. Therefore, making TSP-2 a routine assay could be beneficial to high-risk individuals and patients with digestive malignances.


Assuntos
Neoplasias do Sistema Digestório , Neoplasias Gastrointestinais , Neoplasias do Sistema Digestório/diagnóstico , Intervalo Livre de Doença , Neoplasias Gastrointestinais/diagnóstico , Humanos , Prognóstico , Trombospondinas
10.
Acta Biomater ; 148: 258-270, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35724918

RESUMO

The acute lung injury (ALI) is an inflammatory disorder associated with cytokine storm, which activates various reactive oxygen species (ROS) signaling pathways and causes severe complications in patients as currently seen in coronavirus disease 2019 (COVID-19). There is an urgent need for medication of the inflammatory lung environment and effective delivery of drugs to lung to reduce the burden of high doses of medications and attenuate inflammatory cells and pathways. Herein, we prepared dexamethasone-loaded ROS-responsive polymer nanoparticles (PFTU@DEX NPs) by a modified emulsion approach, which achieved high loading content of DEX (11.61 %). DEX was released faster from the PFTU@DEX NPs in a ROS environment, which could scavenge excessive ROS efficiently both in vitro and in vivo. The PFTU NPs and PFTU@DEX NPs showed no hemolysis and cytotoxicity. Free DEX, PFTU NPs and PFTU@DEX NPs shifted M1 macrophages to M2 macrophages in RAW264.7 cells, and showed anti-inflammatory modulation to A549 cells in vitro. The PFTU@DEX NPs treatment significantly reduced the increased total protein concentration in BALF of ALI mice. The delivery of PFTU@DEX NPs decreased the proportion of neutrophils significantly, mitigated the cell apoptosis remarkably compared to the other groups, reduced M1 macrophages and increased M2 macrophages in vivo. Moreover, the PFTU@DEX NPs had the strongest ability to suppress the expression of NLRP3, Caspase1, and IL-1ß. Therefore, the PFTU@DEX NPs could efficiently suppress inflammatory cells, ROS signaling pathways, and cell apoptosis to ameliorate LPS-induced ALI. STATEMENT OF SIGNIFICANCE: The acute lung injury (ALI) is an inflammatory disorder associated with cytokine storm, which activates various reactive oxygen species (ROS) signaling pathways and causes severe complications in patients. There is an urgent need for medication of the inflammatory lung environment and effective delivery of drugs to modulate the inflammatory disorder and suppress the expression of ROS and inflammatory cytokines. The inhaled PFTU@DEX NPs prepared through a modified nanoemulsification method suppressed the activation of NLRP3, induced the polarization of macrophage phenotype from M1 to M2, and thereby reduced the neutrophil infiltration, inhibited the release of proteins and inflammatory mediators, and thus decreased the acute lung injury in vivo.


Assuntos
Lesão Pulmonar Aguda , Nanopartículas , Pneumonia , Lesão Pulmonar Aguda/tratamento farmacológico , Animais , Síndrome da Liberação de Citocina , Dexametasona/farmacologia , Dexametasona/uso terapêutico , Lipopolissacarídeos/uso terapêutico , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Polímeros/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo
11.
Front Immunol ; 13: 861290, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35669777

RESUMO

Neuropathic pain is characterized by hyperalgesia and allodynia. Inflammatory response is conducive to tissue recovery upon nerve injury, but persistent and exaggerated inflammation is detrimental and participates in neuropathic pain. Synaptic transmission in the nociceptive pathway, and particularly the balance between facilitation and inhibition, could be affected by inflammation, which in turn is regulated by glial cells. Importantly, glycometabolism exerts a vital role in the inflammatory process. Glycometabolism reprogramming of inflammatory cells in neuropathic pain is characterized by impaired oxidative phosphorylation in mitochondria and enhanced glycolysis. These changes induce phenotypic transition of inflammatory cells to promote neural inflammation and oxidative stress in peripheral and central nervous system. Accumulation of lactate in synaptic microenvironment also contributes to synaptic remodeling and central sensitization. Previous studies mainly focused on the glycometabolism reprogramming in peripheral inflammatory cells such as macrophage or lymphocyte, little attention was paid to the regulation effects of glycometabolism reprogramming on the inflammatory responses in glial cells. This review summarizes the evidences for glycometabolism reprogramming in peripheral inflammatory cells, and presents a small quantity of present studies on glycometabolism in glial cells, expecting to promote the exploration in glycometabolism in glial cells of neuropathic pain.


Assuntos
Neuralgia , Sistema Nervoso Central/metabolismo , Humanos , Hiperalgesia/metabolismo , Inflamação/metabolismo , Neuralgia/metabolismo , Neuroglia/metabolismo
12.
Biomed Res Int ; 2022: 6554993, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35757477

RESUMO

Objective: Pediatric patients are facing greater difficulties in radial catheterization for anatomic variation and smaller diameter. This study is to investigate the efficacy of phentolamine accompanied by lidocaine subcutaneously under ultrasound guidance on radial catheterization in pediatric patients. Methods: 66 pediatric patients were enrolled and randomly divided into saline group, phentolamine group, and phentolamine+lidocaine group. Baseline characteristics and surgical types were collected. Relevant solutions were subcutaneously injected, and catheterization was subsequently conducted under ultrasound guidance. Radial artery diameter and depth were measured, the success rate of catheterization and procedure time were calculated, and the complications were evaluated with ultrasonography. Results: No significant differences were observed in age, sex, weight, American Society of Anesthesiologists' classification, systolic blood pressure, diastolic blood pressure, heart rate, hemoglobin, and surgical types among three groups. Subcutaneously, the diameter in phentolamine and phentolamine+lidocaine groups increased significantly compared with the saline group. Moreover, the diameter also increased significantly after injection compared with that before injection both in the phentolamine and phentolamine+lidocaine groups. The first-attempt success rates were significantly higher while the procedure times of cannulation were shorter in the phentolamine and phentolamine+lidocaine groups than that in the saline group. Kaplan-Meier analysis showed that the overall procedure time was shorter in the phentolamine and phentolamine+lidocaine groups than the saline group. Overall complications and vasospasm incidence were lower in the phentolamine and phentolamine+lidocaine groups than the saline group. Conclusion: Phentolamine accompanied by lidocaine subcutaneous injection under ultrasound guidance improved the first-attempt success rate and reduced the complication of radial artery catheterization in pediatric patients.


Assuntos
Lidocaína , Artéria Radial , Cateterismo/métodos , Criança , Humanos , Fentolamina/farmacologia , Fentolamina/uso terapêutico , Artéria Radial/diagnóstico por imagem , Artéria Radial/cirurgia , Ultrassonografia , Ultrassonografia de Intervenção/métodos
13.
Pharmacol Res ; 179: 106229, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35470065

RESUMO

Acute liver injury (ALI) is characterized by massive hepatocyte necrosis and subsequent recruitment of myeloid cells to liver. Mesenchymal stem cells (MSCs) have therapeutic potential for ALI through their immunoregulation on macrophages, but the mechanism is not completely clear due to the heterogeneity and controversy of liver macrophages. Here, we detected the survival rate, biochemical indexes, histopathology, and inflammatory chemokine levels to assess the efficacy of MSC treatment on CCl4-induced ALI of C57BL/6 mice. Furthermore, flow cytometry and single-cell RNA sequencing (scRNA-Seq) were used to precisely distinguish macrophage populations and reveal the immunoregulation of MSCs. MSC treatment could effectively alleviate ALI and mitigate the recruitment of mononuclear phagocytes. Flow cytometry and scRNA-Seq analyses collectively indicated that there were monocytes with high Ly6C expression and heterogeneous monocyte-derived macrophages (MoMF) with low Ly6C expression in liver. Ly6Chi pro-inflammatory monocytes and Ly6Clo MoMF with powerful phagocytosis dominated during the acute injury period. MSC treatment promoted the transition from Ly6Chi to Ly6Clo population, inhibit the proinflammatory function of monocytes and promote the lysosomal function of MoMF. Furthermore, MSCs attenuated the recruitment of neutrophils by reducing the expression of CXCL2 of MoMF. MoMF with high expression of arginase 1 appeared during the recovery period, and MSCs could increase their expression of arginase 1, which may promote liver repair. To sum up, we demonstrated the characteristics of distinct MoMF during different periods of ALI and revealed their functional changes after MSC treatment, providing immunotherapeutic targets for MSC treatment of ALI.


Assuntos
Células-Tronco Mesenquimais , Análise de Célula Única , Animais , Arginase/metabolismo , Arginase/farmacologia , Homeostase , Fígado , Macrófagos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
14.
Cell Death Dis ; 13(3): 271, 2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35347117

RESUMO

Mesenchymal stem cells (MSCs) have attracted interest for their potential to alleviate liver injury. Here, the protective effect of MSCs on carbon tetrachloride (CCl4)-induced acute liver injury (ALI) was investigated. In this study, we illustrated a novel mechanism that ferroptosis, a newly recognized form of regulated cell death, contributed to CCl4-induced ALI. Subsequently, based on the in vitro and in vivo evidence that MSCs and MSC-derived exosomes (MSC-Exo) treatment achieved pathological remission and inhibited the production of lipid peroxidation, we proposed an MSC-based therapy for CCl4-induced ALI. More intriguingly, treatment with MSCs and MSC-Exo downregulated the mRNA level of prostaglandin-endoperoxide synthase 2 (Ptgs2) and lipoxygenases (LOXs) while it restored the protein level of SLC7A11 in primary hepatocytes and mouse liver, indicating that the inhibition of ferroptosis partly accounted for the protective effect of MSCs and MSC-Exo on ALI. We further revealed that MSC-Exo-induced expression of SLC7A11 protein was accompanied by increasing of CD44 and OTUB1. The aberrant expression of ubiquitinated SLC7A11 triggered by CCl4 could be rescued with OTUB1-mediated deubiquitination, thus strengthening SLC7A11 stability and thereby leading to the activation of system XC- to prevent CCl4-induced hepatocyte ferroptosis. In conclusion, we showed that MSC-Exo had a protective role against ferroptosis by maintaining SLC7A11 function, thus proposing a novel therapeutic strategy for ferroptosis-induced ALI.


Assuntos
Exossomos , Ferroptose , Células-Tronco Mesenquimais , Animais , Exossomos/metabolismo , Hepatócitos/metabolismo , Fígado , Células-Tronco Mesenquimais/metabolismo , Camundongos
15.
Nat Prod Rep ; 39(1): 139-162, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34374396

RESUMO

Covering: 2015 to 2020Nitrogen heterocyclic natural products (NHNPs) are primary or secondary metabolites containing nitrogen heterocyclic (N-heterocyclic) skeletons. Due to the existence of the N-heterocyclic structure, NHNPs exhibit various bioactivities such as anticancer and antibacterial, which makes them widely used in medicines, pesticides, and food additives. However, the low content of these NHNPs in native organisms severely restricts their commercial application. Although a variety of NHNPs have been produced through extraction or chemical synthesis strategies, these methods suffer from several problems. The development of biotechnology provides new options for the production of NHNPs. This review introduces the recent progress of two strategies for the biosynthesis of NHNPs: enzymatic biosynthesis and microbial cell factory. In the enzymatic biosynthesis part, the recent progress in the mining of enzymes that synthesize N-heterocyclic skeletons (e.g., pyrrole, piperidine, diketopiperazine, and isoquinoline), the engineering of tailoring enzymes, and enzyme cascades constructed to synthesize NHNPs are discussed. In the microbial cell factory part, with tropane alkaloids (TAs) and tetrahydroisoquinoline (THIQ) alkaloids as the representative compounds, the strategies of unraveling unknown natural biosynthesis pathways of NHNPs in plants are summarized, and various metabolic engineering strategies to enhance their production in microbes are introduced. Ultimately, future perspectives for accelerating the biosynthesis of NHNPs are discussed.


Assuntos
Compostos Heterocíclicos/metabolismo , Engenharia Metabólica/métodos , Compostos de Nitrogênio/metabolismo , Redes e Vias Metabólicas
16.
Sheng Wu Gong Cheng Xue Bao ; 37(6): 1919-1930, 2021 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-34227285

RESUMO

Glycosidases are widely used in food and pharmaceutical industries due to its ability to hydrolyze the glycosidic bonds of various sugar-containing compounds including glycosides, oligosaccharides and polysaccharides to generate derivatives with important physiological and pharmacological activity. While glycosidases often need to be used under high temperature to improve reaction efficiency and reduce contamination, most glycosidases are mesophilic enzymes with low activity under industrial production conditions. It is therefore critical to improve the thermo-stability of glycosidases. This review summarizes the recent advances achieved in engineering the thermo-stability of glycosidases using strategies such as directed evolution, rational design and semi-rational design. We also compared the pros and cons of various techniques and discussed the future prospects in this area.


Assuntos
Glicosídeo Hidrolases , Engenharia de Proteínas , Glicosídeo Hidrolases/genética , Oligossacarídeos , Polissacarídeos
17.
World J Stem Cells ; 13(4): 317-330, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33959221

RESUMO

BACKGROUND: As human placenta-derived mesenchymal stem cells (hP-MSCs) exist in a physiologically hypoxic microenvironment, various studies have focused on the influence of hypoxia. However, the underlying mechanisms remain to be further explored. AIM: The aim was to reveal the possible mechanisms by which hypoxia enhances the proliferation of hP-MSCs. METHODS: A hypoxic cell incubator (2.5% O2) was used to mimic a hypoxic microenvironment. Cell counting kit-8 and 5-ethynyl-20-deoxyuridine incorporation assays were used to assay the proliferation of hP-MSCs. The cell cycle was profiled by flow cytometry. Transcriptome profiling of hP-MSCs under hypoxia was performed by RNA sequencing. CD99 mRNA expression was assayed by reverse transcription-polymerase chain reaction. Small interfering RNA-mediated hypoxia-inducible factor 1α (HIF-1α) or CD99 knockdown of hP-MSCs, luciferase reporter assays, and the ERK1/2 signaling inhibitor PD98059 were used in the mechanistic analysis. Protein expression was assayed by western blotting; immunofluorescence assays were conducted to evaluate changes in expression levels. RESULTS: Hypoxia enhanced hP-MSC proliferation, increased the expression of cyclin E1, cyclin-dependent kinase 2, and cyclin A2, and decreased the expression of p21. Under hypoxia, CD99 expression was increased by HIF-1α. CD99-specific small interfering RNA or the ERK1/2 signaling inhibitor PD98059 abrogated the hypoxia-induced increase in cell proliferation. CONCLUSION: Hypoxia promoted hP-MSCs proliferation in a manner dependent on CD99 regulation of the MAPK/ERK signaling pathway in vitro.

18.
Front Cell Dev Biol ; 9: 605855, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33869168

RESUMO

BACKGROUND: Cholestasis patients often suffer from pain desensitization, resulting in serious complications in perioperative period. This study was aim to investigate the mechanism of bilirubin in cholestasis mediating pain desensitization through 5-hydroxytryptamine 3A (5-HT3A ) receptor activation in spinal dorsal horn (SDH). METHODS: A cholestasis model was established by bile duct ligation (BDL) in rats. Pain thresholds of rats were measured after BDL or intrathecally injecting bilirubin in the presence or absence of agonist (mCPBG) and antagonists (ondansetron, bicuculline, or CGP55845). Expression of 5-HT3 receptors, and the affinity and binding mode of bilirubin to 5-HT3A receptor were determined. Effects of bilirubin on γ-aminobutyric acid (GABA) pathway and the interactions with 5-HT3A receptor were tested. RESULTS: Bilirubin was elevated significantly in both serum and CSF in BDL rats, accompanied with the up-regulation of pain thresholds. Both of 5-HT3A receptor and GABA A receptor antagonists could reverse the increased pain threshold in BDL rats. Further, 5-HT3A and GABA A receptor expressions were increased in BDL rats or intervention with bilirubin. Molecular docking suggested that bilirubin entered the hydrophobic pocket pre-formed in 5-HT3A receptor with potential hydrogen bonding. Bilirubin also increased GABA concentrations in CSF and GABAergic spontaneous inhibitory postsynaptic current in spinal cord, and directly induced inward currents in HEK293 cells which were overexpressed 5-HT3A receptor by lentivirus. CONCLUSION: In conclusion, bilirubin induced pain desensitization in cholestasis by activating 5-HT3A receptor in spinal cord. The activation of 5-HT3A receptor might regulate pain threshold by acting on the GABA pathway.

19.
Stem Cell Res Ther ; 12(1): 201, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33752720

RESUMO

BACKGROUND: Cholangiocyte senescence is an important pathological process in diseases such as primary sclerosing cholangitis (PSC) and primary biliary cirrhosis (PBC). Stem cell/induced pluripotent stem cell-derived exosomes have shown anti-senescence effects in various diseases. We applied novel organoid culture technology to establish and characterize cholangiocyte organoids (cholangioids) with oxidative stress-induced senescence and then investigated whether human placenta mesenchymal stem cell (hPMSC)-derived exosomes exerted a protective effect in senescent cholangioids. METHODS: We identified the growth characteristics of cholangioids by light microscopy and confocal microscopy. Exosomes were introduced concurrently with H2O2 into the cholangioids. Using immunohistochemistry and immunofluorescence staining analyses, we assessed the expression patterns of the senescence markers p16INK4a, p21WAF1/Cip1, and senescence-associated ß-galactosidase (SA-ß-gal) and then characterized the mRNA and protein expression levels of chemokines and senescence-associated secretory phenotype (SASP) components. RESULTS: Well-established cholangioids expressed cholangiocyte-specific markers. Oxidative stress-induced senescence enhanced the expression of the senescence-associated proteins p16INK4a, p21WAF1/Cip1, and SA-ß-gal in senescent cholangioids compared with the control group. Treatment with hPMSC-derived exosomes delayed the cholangioid aging progress and reduced the levels of SASP components (i.e., interleukin-6 and chemokine CC ligand 2). CONCLUSIONS: Senescent organoids are a potential novel model for better understanding senescence progression in cholangiocytes. hPMSC-derived exosomes exert protective effects against senescent cholangioids under oxidative stress-induced injury by delaying aging and reducing SASP components, which might have therapeutic potential for PSC or PBC.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Envelhecimento , Animais , Senescência Celular , Exossomos/genética , Feminino , Humanos , Peróxido de Hidrogênio/toxicidade , Camundongos , Placenta , Gravidez
20.
Biotechnol Bioeng ; 118(5): 1962-1972, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33559890

RESUMO

Glycoside hydrolase family 2 (GH2) enzymes are generally composed of three domains: TIM-barrel domain (TIM), immunoglobulin-like ß-sandwich domain (ISD), and sugar-binding domain (SBD). The combination of these three domains yields multiple structural combinations with different properties. Theoretically, the drawbacks of a given GH2 fold may be circumvented by efficiently reassembling the three domains. However, very few successful cases have been reported. In this study, we used six GH2 ß-glucuronidases (GUSs) from bacteria, fungi, or humans as model enzymes and constructed a series of mutants by reassembling the domains from different GUSs. The mutants PGUS-At, GUS-PAA, and GUS-PAP, with reassembled domains from fungal GUSs, showed improved expression levels, activity, and thermostability, respectively. Specifically, compared to the parental enzyme, the mutant PGUS-At displayed 3.8 times higher expression, the mutant GUS-PAA displayed 1.0 time higher catalytic efficiency (kcat /Km ), and the mutant GUS-PAP displayed 7.5 times higher thermostability at 65°C. Furthermore, two-hybrid mutants, GUS-AEA and GUS-PEP, were constructed with the ISD from a bacterial GUS and SBD and TIM domain from fungal GUSs. GUS-AEA and GUS-PEP showed 30.4% and 23.0% higher thermostability than GUS-PAP, respectively. Finally, molecular dynamics simulations were conducted to uncover the molecular reasons for the increased thermostability of the mutant.


Assuntos
Glucuronidase , Domínios Proteicos/genética , Engenharia de Proteínas/métodos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glucuronidase/química , Glucuronidase/genética , Glucuronidase/metabolismo , Humanos , Simulação de Dinâmica Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...