Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32068228

RESUMO

Interfacial adsorption configuration plays a crucial role in influencing the photovoltaic performance of dye-sensitized solar cells (DSSCs), and thus, theoretical investigations are needed to further understand the impacts of different absorption configurations on stoichiometric and defective TiO2(101) surfaces on the short-circuit photocurrent density (JSC) and open-circuit voltage (VOC) of DSSCs. Herein, calculations of isolated dyes and dye/TiO2 systems were performed on the donor-π bridge-acceptor (D-π-A) type porphyrin sensitizers bearing different donor moieties and an α-cyanoacrylic acid anchoring group (T1-3), using DFT and TD-DFT methods. And, for the first time, comparative analysis of interfacial electron transfer (IET) and density of states (DOS) were carried out on dye/TiO2 systems with stoichiometric and defective surfaces to provide further insight into the electronic factors influencing the efficiency of DSSCs, which can well explain the experimental variation trends of JSC and VOC values. It turned out that attachment via the carboxyl and cynao groups in a tridentate binding mode can result in more efficient IET rates and an upshifted conduction band in comparison with those of the bidentate attachment. More interestingly, we found that the adsorption configuration on defective surfaces containing an O2c vacancy induced more upshifted CBM and relatively fast IET, especially for the bonding mode through two O atoms of the carboxyl group.

2.
Adv Mater ; : e1905502, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31984596

RESUMO

Organic-inorganic metal halide perovskite solar cells (PSCs) have achieved certified power conversion efficiency (PCE) of 25.2% with complex compositional and bandgap engineering. However, the thermal instability of methylammonium (MA) cation can cause the degradation of the perovskite film, remaining a risk for the long-term stability of the devices. Herein, a unique method is demonstrated to fabricate highly phase-stable perovskite film without MA by introducing cesium chloride (CsCl) in the double cation (Cs, formamidinium) perovskite precursor. Moreover, due to the suboptimal bandgap of bromide (Br- ), the amount of Br- is regulated, leading to high power conversion efficiency. As a result, MA-free perovskite solar cells achieve remarkable long-term stability and a PCE of 20.50%, which is one of the best results for MA-free PSCs. Moreover, the unencapsulated device retains about 80% of the original efficiencies after a 1000 h aging study. These results provide a feasible approach to enhance solar cell stability and performance simultaneously, paving the way for commercializing PSCs.

3.
Angew Chem Int Ed Engl ; 59(11): 4354-4359, 2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-31913559

RESUMO

Herein, for the first time, we present the successful synthesis of a novel two-dimensional corrole-based covalent organic framework (COF) by reacting the unusual approximately T-shaped 5,10,15-tris(p-aminophenyl)corrole H3 TPAPC with terephthalaldehyde, which adopts desymmetrized hcb topology and consists of a staggered AB stacking structure with elliptical pores. The resultant corrole-based COF, TPAPC-COF, exhibits high crystallinity and excellent chemical stability. The combination of extended π-conjugated backbone and interlayer noncovalent π-π interactions endows TPAPC-COF with excellent absorption capability in the entire visible-light and even near-infrared regions. Moreover, this work suggests the promise of TPAPC-COF as a new class of photoactive material for efficient singlet-oxygen generation with potential photodynamic therapy application as demonstrated by in vitro anticancer studies.

4.
Soft Matter ; 16(2): 383-389, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31830193

RESUMO

Reverse micellar systems possess a characteristic nanoscale water-in-oil (w/o) structure and can offer mild conditions as a unique and versatile reaction medium. Reverse microemulsions containing water/TX-100 + hexanol/hexane are studied in this work through experimental techniques and simulation methods. Surfactant dosages and water amount affect the micellar structure profoundly, and the polydispersity of the surfactant molecules affects the micellar structure remarkably. TX-100 with 9-10 EO units can form micelles in a simply piling way, while TX-100 with 5-10 EO units endows the micelles with a hierarchical micellar interface and a more compact structure, leading to monodisperse micelles with a smaller diameter. Water in the polar cores has three states. In the reverse micellar system using TX-100 with 9-10 EO units, hydrolysis of tetraethoxysilane happens rapidly and the formed silica gels are apt to aggregate, resulting in polydisperse silica nanoparticles. For the micellar system using TX-100 with 5-10 EO units, the micellar hierarchical distributed interface facilitates the material exchange of tetraethoxysilane and limits the hydrolysis of tetraethoxysilane inside the micelles, providing monodisperse silica nanoparticles.

5.
Small ; 15(39): e1902237, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31389174

RESUMO

Halide perovskites have emerged as a type of extremely promising material for their diverse chemical and electronic structures along with their brilliant optoelectronic properties. The introduction of chirality into perovskite scaffolds, generating a novel concept of chiral perovskite materials, offers an immense step forward toward the development of smart optoelectronic and spintronic materials and devices. The present Review summarizes recent advances in such an emerging field regarding the design and construction of chiral perovskite materials, along with their optoelectronic performances. In addition, an outlook of future challenges as well as the potential significance of the chiral perovskite family on the optical communication is proposed.

6.
J Am Chem Soc ; 141(36): 14443-14450, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31431009

RESUMO

The corrole unit from the porphyrinoid family represents one of the most important ligands in the field of coordination chemistry, which creates a unique environment allowing for the observation of unusual electronic states of bound metal cations and has shown great promise in various applications. Nevertheless, studies that directly and systematically introduce these motifs in porous crystalline materials for targeting further functionalizations are still lacking. Herein, we report for the first time the construction of two robust corrole-based metal-organic frameworks (MOFs), M6(µ3-O)4(µ3-OH)4(OH)3(H2O)3(H3TCPC)3 (M = Zr for Corrole-MOF-1 and M = Hf for Corrole-MOF-2, H3TCPC = 5,10,15-tris(p-carboxylphenyl)corrole), which are assembled by a custom-designed C2ν-symmetric corrolic tricarboxylate ligand and the unprecedented D3d-symmetric 9-connected Zr6/Hf6 clusters. The resultant frameworks feature a rare (3,9)-connected gfy net and exhibit high chemical stability in aqueous solutions within a wide range of pH values. Furthermore, we successfully prepared the cationic Corrole-MOF-1(Fe) from the iron corrole ligand, which can serve as an efficient heterogeneous catalyst for [4 + 2] hetero-Diels-Alder reactions between unactivated aldehydes and a simple diene, outperforming both the homogeneous counterpart and the porphyrinic MOF counterpart.

7.
Beilstein J Org Chem ; 15: 1434-1440, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31293693

RESUMO

Isoxazoline-linked porphyrins have been synthesized by a regioselective 1,3-dipolar cycloaddition reaction between vinylporphyrin 2 and nitrile oxides. The steric interaction directed the reaction trajectory, in which only the product with a link between the 5-position of the isoxazoline and the ß-position of porphyrin was observed. The isoxazoline-porphyrins 3a,b have been characterized by absorption, emission, 1H NMR and mass spectra. Later, the crystal structure of 3a was obtained and confirmed the basic features of the NMR-derived structure. Furthermore, a pair of enantiomers of 3a presented in the crystal, which formed a dimeric complex through intermolecular coordination between the Zn2+ center and the carbonyl group of the second molecule.

8.
Nanoscale ; 11(24): 11709-11718, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31180099

RESUMO

Multimodal therapies have been regarded as promising strategies for cancer treatment as compared to conventional drug delivery systems that have various drawbacks in either low loading content, uncontrolled release, non-targeting or biotoxicity. We have developed a multifunctional three-dimensional tumor-targeting drug delivery system, Fe3O4@UIO-66-NH2/graphdiyne (FUGY), based on the hybridization of a novel two-dimensional material, graphdiyne (GDY), with a metal organic framework (MOFs) structure, Fe3O4@UIO-66-NH2 (FU). The FU MOF structure has superior ability for magnetic targeting, and was constructed by an in situ growth method in which it was surface-installed with GDY via amide bonds, as a carrier of anticancer drugs. The anticancer drug doxorubicin (DOX) was loaded onto FUGY and served as both an anticancer drug to treat the tumor and a fluorescence probe to ascertain the location of FUGY. The results show that FUGY exhibits a high drug loading content of 43.8% and an effective drug release around the tumor cells at pH 5.0. In particular, fluorescence imaging demonstrates that FUGY can deliver more anticancer drugs to tumor tissue than conventional drug delivery systems. Furthermore, FUGY exhibits superior therapeutic efficiencies with negligible side effects as compared to the direct administration of free DOX, both in vitro and in vivo. The obtained FUGY drug delivery system possesses ideal biocompatibility, sustained drug release, effective chemotherapeutic efficacy, and specific targeting abilities. Such a multimodal therapeutic system can facilitate new possibilities for multifunctional drug delivery systems.


Assuntos
Antibióticos Antineoplásicos , Doxorrubicina , Portadores de Fármacos , Nanopartículas de Magnetita , Neoplasias Experimentais , Imagem Óptica , Animais , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/farmacologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia
9.
Phys Chem Chem Phys ; 21(10): 5834-5844, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30806399

RESUMO

Dye-sensitized solar cells (DSSCs) have attracted much interest during the past few decades. However, it is still a tremendous challenge to identify organic molecules that give an optimal power conversion efficiency (PCE). Here, we apply our recently developed, inverse-design method for this issue with the special aim of identifying porphyrins with promisingly high PCE. It turns out that the calculations lead to the prediction of 15 new molecules with optimal performances and for which none so far has been studied. These porphyrin derivatives will in the near future be synthesized and subsequently tested experimentally. Our inverse-design approach, PooMa, is based on the strategy of providing suggestions for molecular systems with optimal properties. PooMa has been developed as a tool that requires minimal resources and, therefore, builds on various approximate methods. It uses genetic algorithm to screen thousands (or often more) of molecules. For each molecule, the density-functional tight-binding (DFTB) method is used for calculating the electronic properties. In the present work, five different electronic properties are determined, all of which are related to optical performance. Subsequently, a quantitative structure-property relationship (QSPR) model is constructed that can predict the PCE through those five electronic properties. Finally, we benchmark our results through more accurate DFT calculations that give further information on the predicted optimal molecules.

10.
Adv Mater ; 31(14): e1807981, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30730064

RESUMO

Graphdiyne is a new carbon allotrope comprising sp- and sp2 -hybridized carbon atoms arranged in a 2D layered structure. In this contribution, 2D graphdiyne is demonstrated to exhibit a strong light-matter interaction with high stability to achieve a broadband Kerr nonlinear optical response, which is useful for nonreciprocal light propagation in passive photonic diodes. Furthermore, advantage of the unique Kerr nonlinearity of 2D graphdiyne is taken and a nonreciprocal light propagation device is proposed based on the novel similarity comparison method. Graphdiyne has demonstrated a large nonlinear refractive index in the order of ≈10-5 cm2 W-1 , comparing favorably to that of graphene. Based on the strong Kerr nonlinearity of 2D graphdiyne, a nonlinear photonic diode that breaks time-reversal symmetry is demonstrated to realize the unidirectional excitation of Kerr nonlinearity, which can be regarded as a significant demonstration of a graphdiyne-based prototypical application in nonlinear photonics and might suggest an important step toward versatile graphdiyne-based advanced passive photonics devices in the future.

11.
J Nanosci Nanotechnol ; 19(6): 3669-3672, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30744804

RESUMO

Organic-inorganic hybrid perovskite single crystals have attracted much attention due to their superior optoelectronic properties. Herein, we report a facile vapor-solution sequential route to prepare single-crystalline nanosheets of hybrid lead triiodide perovskite. It is found that this two-step deposition is able to fabricate sizeable high-quality single-crystalline nanosheets with no need of delicate control of crystallization conditions such as concentration or temperature for normal single crystal growth. The resulting perovskite nanosheets show good reproducibility and single crystallinity with bright and uniform photoluminescence. Our study provides a promising strategy for scalable fabrication of perovskite single crystals with great potential in optoelectronic applications.

12.
J Am Chem Soc ; 140(37): 11716-11725, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30153411

RESUMO

All-inorganic lead halide perovskites demonstrate improved thermal stability over the organic-inorganic halide perovskites, but the cubic α-CsPbI3 with the most appropriate bandgap for light harvesting is not structurally stable at room temperature and spontaneously transforms into the undesired orthorhombic δ-CsPbI3. Here, we present a new member of black-phase thin films of all-inorganic perovskites for high-efficiency photovoltaics, the orthorhombic γ-CsPbI3 thin films with intrinsic thermodynamic stability and ideal electronic structure. Exempt from introducing organic ligands or incorporating mixed cations/anions into the crystal lattice, we stabilize the γ-CsPbI3 thin films by a simple solution process in which a small amount of H2O manipulates the size-dependent phase formation through a proton transfer reaction. Theoretical calculations coupled with experiments show that γ-CsPbI3 with a lower surface free energy becomes thermodynamically preferred over δ-CsPbI3 at surface areas greater than 8600 m2/mol and exhibits comparable optoelectronic properties to α-CsPbI3. Consequently, γ-CsPbI3-based solar cells display a highly reproducible efficiency of 11.3%, among the highest records for CsPbI3 thin-film solar cells, with robust stability in ambient atmosphere for months and continuous operating conditions for hours. Our study provides a novel and fundamental perspective to overcome the Achilles' heel of the inorganic lead iodide perovskite and opens it up for high-performance optoelectronic devices.

13.
Nano Lett ; 18(9): 5411-5417, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30102548

RESUMO

Hybrid organic/inorganic lead halide perovskites (LHPs) have recently emerged as extremely promising photonic materials. However, the exploration of their optical nonlinearities has been mainly focused on the third- and higher-order nonlinear optical (NLO) effects. Strong second-order NLO responses are hardly expected from ordinary LHPs due to their intrinsic centrosymmetric structures, but are highly desirable for advancing their applications in the next generation integrated photonic circuits. Here we demonstrate the fabrication of a novel noncentrosymmetric LHP material by introducing chiral amines as the organic component. The nanowires grown from this new LHP material crystallize in a noncentrosymmetric P1 space group and demonstrate highly efficient second harmonic generation (SHG) with high polarization ratios and chiroptical NLO effects. Such a chiral perovskite skeleton could provide a new platform for future engineering of optoelectronic functionalities of hybrid perovskite materials.

14.
Theranostics ; 8(11): 3111-3125, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29896306

RESUMO

Low water solubility and poor selectivity are two fundamental limitations that compromise applications of near-infrared (NIR) fluorescent probes. Methods: Here, a simple strategy that can resolve these problems simultaneously was developed by using a novel hybrid protein named RGD-HFBI that is produced by fusion of hydrophobin HFBI and arginine-glycine-aspartic acid (RGD) peptide. This unique hybrid protein inherits self-assembly and targeting functions from HFBI and RGD peptide respectively. Results: Boron-dipyrromethene (BODIPY) used as a model NIR dye can be efficiently dispersed in the RGD-HFBI solution by simple mixing and sonication for 30 min. The data shows that self-assembled RGD-HFBI forms a protein nanocage by using the BODIPY as the assembly template. Cell uptake assay proves that RGD-HFBI/BODIPY can efficiently stain αvß3 integrin-positive cancer cells. Finally, in vivo affinity tests fully demonstrate that the soluble RGD-HFBI/BODIPY complex selectively targets and labels tumor sites of tumor-bearing mice due to the high selectivity of the RGD peptide. Conclusion: Our one-step strategy using dual-functional RGD-HFBI opens a novel route to generate soluble and targeted NIR fluorescent dyes in a very simple and efficient way and may be developed as a general strategy to broaden their applications.


Assuntos
Antineoplásicos/metabolismo , Corantes Fluorescentes/metabolismo , Imidazóis/metabolismo , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias/diagnóstico por imagem , Oligopeptídeos/metabolismo , Animais , Antineoplásicos/química , Boro/química , Linhagem Celular Tumoral , Feminino , Citometria de Fluxo , Corantes Fluorescentes/química , Imidazóis/química , Raios Infravermelhos , Integrina alfaVbeta3/química , Integrina alfaVbeta3/metabolismo , Camundongos , Camundongos Nus , Microscopia Confocal , Nanocápsulas , Oligopeptídeos/química , Porfobilinogênio/análogos & derivados , Porfobilinogênio/química , Proteínas Recombinantes de Fusão , Solubilidade
15.
Phys Chem Chem Phys ; 19(42): 28867-28875, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29057410

RESUMO

Three donor-π conjugated unit-acceptor (D-π-A) type zinc porphyrin sensitizers LX1, LX2 and LX3 bearing meso acrylic acid, α-cyanoacrylic acid, and α-cyanopentadienoic acid, respectively, as the π-bridged acceptors were designed and synthesized for use in dye-sensitized solar cells (DSCs). The interesting role of the cyano group attached to the α position of the acrylic and pentadienoic acid acceptor was investigated. It was shown that even though the introduction of the cyano group and the elongation of the π-bridge can both increase the light-harvesting as indicated by the UV-vis absorption spectra, the relevant cell performance dropped significantly. The photo to power conversion efficiencies (PCEs) of the devices increase in the order of LX1 > LX2 > LX3, with the highest PCE of 6.04% achieved for the LX1-based cell, which bears acrylic acid as the π-bridged acceptor. To further explore the effect of -CN and -CH[double bond, length as m-dash]CH- on the interaction between the absorbed dye and TiO2 substrates, their density of states (DOS) and partial density of states (PDOS), as well as electronic properties were investigated in detail using theoretical calculations. The results suggest that introducing the -CN group into the acceptor and extending the conjugation of the π-bridge have decreased the LUMO levels of the dyes, leading to weak interfacial coupling, low electron injection driving force, low Jsc, and thus poor cell performance.

16.
Adv Mater ; 29(36)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28741706

RESUMO

Functionalized imidazolium iodide salts (ionic liquids) modified with CH2 CHCH2 , CH2 CCH, or CH2 CN groups are applied as dopants in the synthesis of CH3 NH3 PbI3 -type perovskites together with a fumigation step. Notably, a solar cell device prepared from the perovskite film doped with the salt containing the CH2 CHCH2 side-chain has a power conversion efficiency of 19.21%, which is the highest efficiency reported for perovskite solar cells involving a fumigation step. However, doping with the imidazolium salts with the CH2 CCH and CH2 CN groups result in perovskite layers that lead to solar cell devices with similar or lower power conversion efficiencies than the dopant-free cell.

17.
Chemistry ; 23(47): 11375-11384, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28612992

RESUMO

Complexation of group 11 metal cations with an α-bis(phenylthio)-substituted trans-doubly N-confused porphyrin (trans-N2 CPSPh : 4) afforded a series of square-planar trivalent organometallic complexes (i.e., Cu-H4, Ag-H4, and Au-H4). The X-ray crystal structures of the complexes revealed highly planar core geometries along with the presence of peripheral amine and imine nitrogen sites of the pyrrolic moieties. NMR, UV/Vis absorption, and magnetic circular dichroism (MCD) spectroscopies suggested the 18 π-electron aromaticity of the complexes. The aromaticity was also fully analyzed by various theoretical methodologies such as nucleus-independent chemical shift (NICS) and anisotropic induced current density (ACID) calculations. The central metal affects the amphiprotic character of the complexes possessing both pyrrolic amino nitrogen and imino nitrogen atoms at the periphery, which was examined by the photometric titration with trifluoroacetic acid (TFA) and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), respectively. The inherent acidity of the complexes was followed in the order; Cu-H4>Au-H4>Ag-H4 and that of basicity was Au-H4>Ag-H4>Cu-H4. The complexes could be considered as an "expanded imidazole" structural motif.

18.
Nanoscale ; 8(38): 16881-16885, 2016 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-27714098

RESUMO

Tuning the band alignment is proved to be an effective way to facilitate carrier transportation and thus enhance the power conversion efficiency (PCE) of solar cells. Doping the compact layer with metal ions or modifying the interfaces among functional layers in perovskite solar cells (PSCs) can appreciably improve the PCE of PSCs. Inspired by the rare earth elemental doping of TiO2, which has witnessed the success in photocatalysis and dye-sensitized solar cells, we firstly demonstrated here that La3+ doping in the mesoporous TiO2 layer of a mesostructured PSC can tune its Fermi level and thus significantly enhance the device PCE. Systematic analysis reveals that doping La3+ into TiO2 raises the Fermi level of TiO2 through scavenging oxygen and inducing vacancies, which subsequently increases the open circuit voltage and the fill factor while reducing the series resistance of the PSC using La3+-doped TiO2 as a mesoporous layer. As a result, a PCE of 15.42% is achieved, which is appreciably higher than the PCE of a device with undoped TiO2 (12.11%).

19.
J Am Chem Soc ; 138(43): 14380-14387, 2016 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-27718567

RESUMO

Interfacial engineering of the meso-TiO2 surface through a modified sequential deposition procedure involving a novel PbI2-HMPA complex pretreatment is conducted as a reproducible method for preparing MAPbI3 based perovskite solar cells providing the highest efficiencies yet reported with the polymer HTM layer. Grazing-incidence X-ray diffraction depth profiling confirms the formation of a perovskite film with a PbI2-rich region close to the electron transport layer (ETL) due to the strong interaction of HMPA with PbI2, which successfully retarded the dissolution of the PbI2 phase when depositing the perovskite layer on top. These results are further confirmed by energy-dispersive X-ray spectroscopy performed in a scanning transmission electron microscope, which reveals that the I/Pb ratio in samples treated with the complex is indeed reduced in the vicinity of the ETL contact when compared to samples without the treatment. The engineered interface leads to an average power conversion efficiency of 19.2% (reverse scan, standard deviation SD < 0.2) over 30 cells (best cell at 19.5% with high FF of 0.80).

20.
Monatsh Chem ; 147: 1031-1036, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27226652

RESUMO

ABSTRACT: A high yield preparation, spectroscopic and crystallographic investigation of the crystalline Zn-complex of a di(ß,ß'-sulfoleno)pyrrin are reported here. In the brightly green fluorescent Zn-complex of the hardly luminescent di(ß,ß'-sulfoleno)pyrrin, the metal ion is bound by two di(ß,ß'-sulfoleno)pyrrin ligands, as revealed first by its mass spectra. The crystal structure of this Zn-complex of the di(ß,ß'-sulfoleno)pyrrin confirmed a regular 2:1 composition of the bidentate di(ß,ß'-sulfoleno)pyrrin ligand and the metal ion. The latter was coordinated in a distorted tetrahedral fashion, as found in other dipyrrin Zn-complexes. The here studied Zn-complex of a designed di(ß,ß'-sulfoleno)pyrrin ligand provides insights into the coordination properties of the proposed (2:1)- and (2:2)-complexes of phylloxanthobilin and bilirubin, respectively, which are two abundant natural bilin-type tetrapyrroles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA