RESUMO
Recent experiments report a charge density wave (CDW) in the antiferromagnet FeGe, but the nature of the charge ordering and the associated structural distortion remains elusive. We discuss the structural and electronic properties of FeGe. Our proposed ground state phase accurately captures atomic topographies acquired by scanning tunneling microscopy. We show that the 2 × 2 × 1 CDW likely results from the Fermi surface nesting of hexagonal-prism-shaped kagome states. FeGe is found to exhibit distortions in the positions of the Ge atoms instead of the Fe atoms in the kagome layers. Using in-depth first-principles calculations and analytical modeling, we demonstrate that this unconventional distortion is driven by the intertwining of magnetic exchange coupling and CDW interactions in this kagome material. The movement of Ge atoms from their pristine positions also enhances the magnetic moment of the Fe kagome layers. Our study indicates that magnetic kagome lattices provide a material candidate for exploring the effects of strong electronic correlations on the ground state and their implications for transport, magnetic, and optical responses in materials.
RESUMO
Magnetic Weyl semimetals (MWSMs) exhibit unconventional transport phenomena, such as large anomalous Hall (and Nernst) effects, which are absent in spatial inversion asymmetry WSMs. Compared with its nonmagnetic counterpart, the magnetic state of a MWSM provides an alternative way for the modulation of topology. Spin-orbit torque (SOT), as an effective means of electrically controlling the magnetic states of ferromagnets, may be used to manipulate the topological magnetic states of MWSMs. Here we confirm the MWSM state of high-quality Co2MnGa film by systematically investigating the transport measurements and demonstrating that the magnetization and topology of Co2MnGa can be electrically manipulated. The electrical and magnetic optical measurements further reveal that the current-induced SOT switches the topological magnetic state in a 180-degree manner by applying positive/negative current pulses and in a 90-degree manner by alternately applying two orthogonal current pulses. This work opens up more opportunities for spintronic applications based on topological materials.
RESUMO
Electrically manipulating magnetic moments by spin-orbit torque (SOT) has great potential applications in magnetic memories and logic devices. Although there have been rich SOT studies on magnetic heterostructures, low interfacial thermal stability and high switching current density still remain an issue. Here, highly textured, polycrystalline Heusler alloy MnxPtyGe (MPG) films with various thicknesses are directly deposited onto thermally oxidized silicon wafers. The perpendicular magnetization of the MPG single layer can be reversibly switched by electrical current pulses with a magnitude as low as 4.1 × 1010Am-2, as evidenced by both the electrical transport and the magnetic optical measurements. The switching is shown to arise from inversion symmetry breaking due to the vertical composition gradient of the films after sample annealing. The SOT effective fields of the samples are analyzed systematically. It is found that the SOT efficiency increases with the film thickness, suggesting a robust bulk-like behavior in the single magnetic layer. Furthermore, a memristive characteristic has been observed due to a multidomain switching property in the single-layer MPG device. Additionally, deterministic field-free switching of magnetization is observed when the electric current flows orthogonal to the direction of the in-plane compositional gradient due to the in-plane symmetry breaking. This work proves that the MPG is a good candidate to be utilized in high-density and efficient magnetoresistive random access memory devices and other spintronic applications.
RESUMO
Transition-metal trihalides MX3 (M = Cr, Ru; X = Cl, Br, and I) belong to a family of novel two-dimensional (2D) magnets that can exhibit topological magnons and electromagnetic properties, thus affording great promises in next-generation spintronic devices. Rich magnetic ground states observed in the MX3 family are believed to be strongly correlated to the signature Kagome lattice and interlayer van der Waals coupling raised from distinct stacking orders. However, the intrinsic air instability of MX3 makes their direct atomic-scale analysis challenging. Therefore, information on the stacking-registry-dependent magnetism for MX3 remains elusive, which greatly hinders the engineering of desired phases. Here, we report a nondestructive transfer method and successfully realize an intact transfer of bilayer MX3, as evidenced by scanning transmission electron microscopy (STEM). After surveying hundreds of MX3 thin flakes, we provide a full spectrum of stacking orders in MX3 with atomic precision and calculated their associated magnetic ground states, unveiled by combined STEM and density functional theory (DFT). In addition to well-documented phases, we discover a new monoclinic C2/c phase in the antiferromagnetic (AFM) structure widely existing in MX3. Rich stacking polytypes, including C2/c, C2/m, R3Ì , P3112, etc., provide rich and distinct magnetic ground states in MX3. Besides, a high density of strain soliton boundaries is consistently found in all MX3, combined with likely inverted structures, allowing AFM to ferromagnetic (FM) transitions in most MX3. Therefore, our study sheds light on the structural basis of diverse magnetic orders in MX3, paving the way for modulating magnetic couplings via stacking engineering.
RESUMO
Interlayer electronic coupling in two-dimensional materials enables tunable and emergent properties by stacking engineering. However, it also results in significant evolution of electronic structures and attenuation of excitonic effects in two-dimensional semiconductors as exemplified by quickly degrading excitonic photoluminescence and optical nonlinearities in transition metal dichalcogenides when monolayers are stacked into van der Waals structures. Here we report a van der Waals crystal, niobium oxide dichloride (NbOCl2), featuring vanishing interlayer electronic coupling and monolayer-like excitonic behaviour in the bulk form, along with a scalable second-harmonic generation intensity of up to three orders higher than that in monolayer WS2. Notably, the strong second-order nonlinearity enables correlated parametric photon pair generation, through a spontaneous parametric down-conversion (SPDC) process, in flakes as thin as about 46 nm. To our knowledge, this is the first SPDC source unambiguously demonstrated in two-dimensional layered materials, and the thinnest SPDC source ever reported. Our work opens an avenue towards developing van der Waals material-based ultracompact on-chip SPDC sources as well as high-performance photon modulators in both classical and quantum optical technologies1-4.
RESUMO
The kagome lattice has attracted intense interest with the promise of realizing topological phases built from strongly interacting electrons. However, fabricating two-dimensional (2D) kagome materials with nontrivial topology is still a key challenge. Here, we report the growth of single-layer iron germanide kagome nanoflakes by molecular beam epitaxy. Using scanning tunneling microscopy/spectroscopy, we unravel the real-space electronic localization of the kagome flat bands. First-principles calculations demonstrate the topological band inversion, suggesting the topological nature of the experimentally observed edge mode. Apart from the intrinsic topological states that potentially host chiral edge modes, the realization of kagome materials in the 2D limit also holds promise for future studies of geometric frustration.
RESUMO
Chirality generates spontaneous symmetry breaking and profoundly influences the topology, charge, and spin orders of materials. The chiral charge density wave (CDW) exhibits macroscopic chirality in the achiral crystal during the spontaneous electronic phase transitions. However, the mechanism of chiral CDW formation is shrouded in controversy. In this work, we report that two-dimensional H-phase TaS2 synthesized by molecular-beam epitaxy (MBE) shows a predominantly chiral CDW phase. Scanning tunneling microscopy (STM) imaging of the CDW reconstruction spots reveals a clockwise or anticlockwise intensity variation along the STM-imaged spots. First-principles calculations further show that the rotational symmetry of the momentum-dependent electron-phonon coupling is broken, giving rise to chirality. Our work provides new insights into the physical origin of the chiral charge-ordered states, shedding light on a general ordering rule in chiral CDWs.
RESUMO
The strong interaction between charge and lattice vibration gives rise to a polaron, which has a profound effect on optical and transport properties of matters. In magnetic materials, polarons are involved in spin dependent transport, which can be potentially tailored for spintronic and opto-spintronic device applications. Here, we identify the signature of ultrafast formation of polaronic states in CrBr3. The polaronic states are long-lived, having a lifetime on the time scale of nanoseconds to microseconds, which coincides with the emission lifetime of â¼4.3 µs. Transition of the polaronic states is strongly screened by the phonon, generating a redshift of the transition energy â¼0.2 eV. Moreover, energy-dependent localization of polaronic states is discovered followed by transport/annihilation properties. These results shed light on the nature of the polarons and their formation and transport dynamics in layered magnetic materials, which paves the way for the rational design of two-dimensional magnetic devices.
RESUMO
Two-dimensional (2D) electrides, characterized by excess interstitial anionic electron (IAE) in a crystalline 2D material, offer promising opportunities for the development of electrode materials, in particular in rechargeable metal-ion batteries applications. Although a few such potential electride materials have been reported, they generally show low metal-ion storage capacity, and the effect of IAE on the ion storage performance remains elusive so far. Here we report a novel 2D electride, [Sc3Si2]1+·1e-, with fascinating IAE-driven high alkali metal-ion storage capacity. In particular, its K-ion specific capacity can reach up to 1497 mA h g-1, higher than any previously reported 2D materials-based anodes in K-ion batteries (PIBs). The IAE in the [Sc3Si2]1+·1e- crystal accounts for such high capacity behavior, which can drift away and balance the charge on the metal-cation, playing a crucial role in stabilizing the metal-ion adsorption and enhancing multilayer-ions adsorption. This proposed IAE-driven storage mechanism provides an unprecedented avenue for the future design of high storage capacity electrode materials.
RESUMO
The chemical bond is of central interest in chemistry, and it is of significance to study the nature of intermolecular bonds in real-space. Herein, non-contact atomic force microscopy (nc-AFM) and low-temperature scanning tunneling microscopy (LT-STM) are employed to acquire real-space atomic information of molecular clusters, i.e., monomer, dimer, trimer, tetramer, formed on Au(111). The formation of the various molecular clusters is due to the diversity of halogen bonds. DFT calculation also suggests the formation of three distinct halogen bonds among the molecular clusters, which originates from the noncovalent interactions of Br-atoms with the positive potential H-atoms, neutral potential Br-atoms, and negative potential N-atoms, respectively. This work demonstrates the real-space investigation of the multiple halogen bonds by nc-AFM/LT-STM, indicating the potential use of this technique to study other intermolecular bonds and to understand complex supramolecular assemblies at the atomic/sub-molecular level.
RESUMO
2D platinum ditelluride (PtTe2) has received significant attention for 2D photodetector applications due to its novel physical properties. One of the critical factors that affect device performance is the film quality. Here, using molecular beam epitaxy, we investigate the role of growth temperature in determining the film quality of PtTe2 on highly oriented pyrolytic graphite, and unveil its layer-dependent electronic properties by X-ray photoelectron spectroscopy, Raman spectroscopy, and scanning tunneling microscopy/spectroscopy (STM/STS), as well as density functional theory (DFT) calculations. At low growth temperature (≤250 °C), the PtTe2 film prefers a stack of the monolayer and bilayer, while at ≈300 °C large-area continuous bilayer films are formed. In contrast, high growth temperature (>300 °C) leads to the formation of thick films with high Te deficiency and poor crystallinity. Theoretical calculations confirm the higher thermal stability of bilayer PtTe2 over other layer numbers above a critical crystal size of ≈100 nm2. STS shows that PtTe2 is a semiconductor in the monolayer with a bandgap of 0.80 ± 0.05 eV, and changes to a semimetal from the bilayer. DFT calculations support our experimental results and suggest an indirect bandgap structure of the monolayer. This work provides a systematic study of the layer-dependent electronic structure of 2D PtTe2, and demonstrates that with appropriate substrate and growth temperature choices, high-quality ultrathin PtTe2 films can be obtained, important for device applications.
RESUMO
In a two-dimensional (2D) Kagome lattice, the ideal Kagome bands including Dirac cones, van Hove singularities, and a flat band are highly expected, because they can provide a promising platform to investigate novel physical phenomena. However, in the reported Kagome materials, the complex 3D and multiorder electron hoppings result in the disappearance of the ideal Kagome bands in these systems. Here, we propose an alternative way to achieve the ideal Kagome bands in non-Kagome materials by confining excess electrons in the system to the crystal interstitial sites to form a 2D Kagome lattice, coined as a Kagome electride. Then, we predict two novel stable 2D Kagome electrides in hexagonal materials Li5Si and Li5Sn, whose band structures are similar to the ideal Kagome bands, including topological Dirac cones with beautiful Fermi arcs in their surface states, van Hove singularities, and a flat band. In addition, Li5Si is revealed to be a low-temperature superconductor at ambient pressure, and its superconducting transition temperature Tc can be increased from 1.1 K at 0 GPa to 7.2 K at 100 GPa. The high Tc is unveiled to be the consequence of strong electron-phonon coupling originated from the sp-hybridized phonon-coupled bands and phonon softening caused by strong Fermi nesting. Due to the strong Fermi nesting, the charge density wave phase transition occurs at 110 GPa with the lattice reconstructed from hexagonal to orthorhombic, accompanied with the increase of Tc to 10.5 K. Our findings pave an alternative way to fabricate more real materials with Kagome bands in electrides.
RESUMO
Quantum spin Hall (QSH) systems hold promises of low-power-consuming spintronic devices, yet their practical applications are extremely impeded by the small energy gaps. Fabricating QSH materials with large gaps, especially under the guidance of design principles, is essential for both scientific research and practical applications. Here, we demonstrate that large on-site atomic spin-orbit coupling can be directly exploited via the intriguing substrate-orbital-filtering effect to generate large-gap QSH systems and experimentally realized on the epitaxially synthesized ultraflat bismuthene on Ag(111). Theoretical calculations reveal that the underlying substrate selectively filters Bi pz orbitals away from the Fermi level, leading pxy orbitals with nonzero magnetic quantum numbers, resulting in large topological gap of â¼1 eV at the K point. The corresponding topological edge states are identified through scanning tunneling spectroscopy combined with density functional theory calculations. Our findings provide general strategies to design large-gap QSH systems and further explore their topology-related physics.
RESUMO
Well-ordered spin arrays are desirable for next-generation molecule-based magnetic devices, yet their synthetic method remains a challenging task. Herein, we demonstrate the realization of two-dimensional supramolecular spin arrays on surfaces via halogen-bonding molecular self-assembly. A bromine-terminated perchlorotriphenylmethyl radical with net carbon spin was synthesized and deposited on Au(111) to achieve two-dimensional supramolecular spin arrays. By taking advantage of the diversity of halogen bonds, five supramolecular spin arrays form and are probed by low-temperature scanning tunneling microscopy at the single-molecule level. First-principles calculations verify that the formation of three distinct types of halogen bonds can be used to tailor supramolecular spin arrays via molecular coverage and annealing temperature. Our work suggests that supramolecular self-assembly can be a promising method to engineer two-dimensional molecular spin arrays.
RESUMO
Antiferromagnetic insulators are a ubiquitous class of magnetic materials, holding the promise of low-dissipation spin-based computing devices that can display ultra-fast switching and are robust against stray fields. However, their imperviousness to magnetic fields also makes them difficult to control in a reversible and scalable manner. Here we demonstrate a novel proof-of-principle ionic approach to control the spin reorientation (Morin) transition reversibly in the common antiferromagnetic insulator α-Fe2O3 (haematite) - now an emerging spintronic material that hosts topological antiferromagnetic spin-textures and long magnon-diffusion lengths. We use a low-temperature catalytic-spillover process involving the post-growth incorporation or removal of hydrogen from α-Fe2O3 thin films. Hydrogenation drives pronounced changes in its magnetic anisotropy, Néel vector orientation and canted magnetism via electron injection and local distortions. We explain these effects with a detailed magnetic anisotropy model and first-principles calculations. Tailoring our work for future applications, we demonstrate reversible control of the room-temperature spin-state by doping/expelling hydrogen in Rh-substituted α-Fe2O3.
RESUMO
The realization of long-range magnetic ordering in 2D systems can potentially revolutionize next-generation information technology. Here, the successful fabrication of crystalline Cr3 Te4 monolayers with room temperature (RT) ferromagnetism is reported. Using molecular beam epitaxy, the growth of 2D Cr3 Te4 films with monolayer thickness is demonstrated at low substrate temperatures (≈100 °C), compatible with Si complementary metal oxide semiconductor technology. X-ray magnetic circular dichroism measurements reveal a Curie temperature (Tc ) of v344 K for the Cr3 Te4 monolayer with an out-of-plane magnetic easy axis, which decreases to v240 K for the thicker film (≈7 nm) with an in-plane easy axis. The enhancement of ferromagnetic coupling and the magnetic anisotropy transition is ascribed to interfacial effects, in particular the orbital overlap at the monolayer Cr3 Te4 /graphite interface, supported by density-functional theory calculations. This work sheds light on the low-temperature scalable growth of 2D nonlayered materials with RT ferromagnetism for new magnetic and spintronic devices.
RESUMO
Lieb lattice, a two-dimensional edge-centered square lattice, has attracted considerable interest due to its exotic electronic and topological properties. Although various optical and photonic Lieb lattices have been experimentally demonstrated, it remains challenging for an electronic Lieb lattice to be realized in real material systems. Here, based on first-principles calculations and tight-binding modeling, a silver sulfide (Ag2S) monolayer is reported as a long-sought-after inorganic electronic Lieb lattice. This Lieb-lattice Ag2S is further found to be ultrasoft, which enables its electronic properties and topological states near the Fermi level to be finely tuned, as evidenced by the strain-induced topologically non-trivial edge states near the valence band edge. These results not only provide an ideal platform to further explore and harvest interesting quantum properties but also pave a way to pursue other inorganic electronic Lieb lattices in a broader material domain.
RESUMO
For mass production of high-purity hydrogen fuel by electrochemical water splitting, seawater electrolysis is an attractive alternative to the traditional freshwater electrolysis due to the abundance and low cost of seawater in nature. However, the undesirable chlorine ion oxidation reactions occurring simultaneously with seawater electrolysis greatly hinder the overall performance of seawater electrolysis. To tackle this problem, electrocatalysts of high activity and selectivity with purposely modulated coordination and an alkaline environment are urgently required. Herein, it is demonstrated that atomically dispersed Ni with triple nitrogen coordination (Ni-N3 ) can achieve efficient hydrogen evolution reaction (HER) performance in alkaline media. The atomically dispersed Ni electrocatalysts exhibit overpotentials as low as 102 and 139 mV at 10 mA cm-2 in alkaline freshwater and seawater electrolytes, respectively, which compare favorably with those previously reported. They also deliver large current densities beyond 200 mA cm-2 at lower overpotentials than Pt/C, as well as show negligible current attenuation over 14 h. The X-ray absorption fine structure (XAFS) experimental analysis and density functional theory (DFT) calculations verify that the Ni-N3 coordination, which exhibits a lower coordination number than Ni-N4 , facilitates water dissociation and hydrogen adsorption, and hence enhances the HER activity.
RESUMO
Exploring exotic interface magnetism due to charge transfer and strong spin-orbit coupling has profound application in the future development of spintronic memory. Here, the emergence and tuning of topological Hall effect (THE) from a CaMnO3 /CaIrO3 /CaMnO3 trilayer structure are studied in detail, which suggests the presence of magnetic Skyrmion-like bubbles. First, by tilting the magnetic field direction, the evolution of the Hall signal suggests a transformation of Skyrmions into topologically-trivial stripe domains, consistent with behaviors predicted by micromagnetic simulations. Second, by varying the thickness of CaMnO3 , the optimal thicknesses for the THE signal emergence are found, which allow identification of the source of Dzyaloshinskii-Moriya interaction (DMI) and its competition with antiferromagnetic superexchange. Employing high-resolution transmission electron microscopy, randomly distributed stacking faults are identified only at the bottom interface and may avoid mutual cancellation of DMI. Last, a spin-transfer torque experiment also reveals a low threshold current density of ≈109 A m-2 for initiating the bubbles' motion. This discovery sheds light on a possible strategy for integrating Skyrmions with antiferromagnetic spintronics.
RESUMO
The degree of buckling of two-dimensional (2D) materials can have a dramatic impact on their corresponding electronic structures. Antimonene (ß-phase), a new 2D material with air stability and promising electronic properties, has been engineered to adopt flat or two-heights-buckling geometries by employing different supporting substrates for epitaxial growth. However, studies of the antimonene monolayer with a more buckled configuration are still lacking. Here, we report the synthesis of an antimonene monolayer with a three-heights-buckling configuration overlaid on SbAg2 surface alloy-covered Ag(111) by molecular beam epitaxy, in which the underlying surface alloy provides interfacial interactions to modulate the structure of the antimonene monolayer. The atomic structure of the synthesized antimonene has been precisely identified through a combination of low-temperature scanning tunneling microscopy and density functional theory calculations. The successful fabrication of a buckled antimonene monolayer could provide a promising way to modulate the structures of 2D materials for future electronic and optoelectronic applications.