Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Health Geogr ; 19(1): 16, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32312266

RESUMO

BACKGROUND: Distance sampling methods are widely used in ecology to estimate and map the abundance of animal and plant populations from spatial survey data. The key underlying concept in distance sampling is the detection function, the probability of detecting the occurrence of an event as a function of its distance from the observer, as well as other covariates that may influence detection. In epidemiology, the burden and distribution of infectious disease is often inferred from cases that are reported at clinics and hospitals. In areas with few public health facilities and low accessibility, the probability of detecting a case is also a function of the distance between an infected person and the "observer" (e.g. a health centre). While the problem of distance-related under-reporting is acknowledged in public health; there are few quantitative methods for assessing and correcting for this bias when mapping disease incidence. Here, we develop a modified version of distance sampling for prediction of infectious disease incidence by relaxing some of the framework's fundamental assumptions. We illustrate the utility of this approach using as our example malaria distribution in rural Burkina Faso, where there is a large population at risk but relatively low accessibility of health facilities. RESULTS: The modified distance-sampling framework was used to predict the probability of reporting malaria infection at 8 rural clinics, based on road-travel distances from villages. The rate at which reporting probability dropped with distance varied between clinics, depending on road and clinic positions. The probability of case detection was estimated as 0.3-1 in the immediate vicinity of the clinic, dropping to 0.1-0.6 at a travel distance of 10 km, and effectively zero at distances > 30-40 km. CONCLUSIONS: To enhance the method's strategic impact, we provide an interactive mapping tool (as a self-contained R Shiny app) that can be used by non-specialists to interrogate model outputs and visualize how the overall probability of under-reporting and the catchment area of each clinic is influenced by changing the number and spatial allocation of health centres.

2.
Parasit Vectors ; 13(1): 31, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31941536

RESUMO

BACKGROUND: Entomological monitoring of Aedes vectors has largely relied on surveillance of larvae, pupae and non-host-seeking adults, which have been poorly correlated with human disease incidence. Exposure to mosquito-borne diseases can be more directly estimated using human landing catches (HLC), although this method is not recommended for Aedes-borne arboviruses. We evaluated a new method previously tested with malaria vectors, the mosquito electrocuting trap (MET) as an exposure-free alternative for measuring landing rates of Aedes mosquitoes on people. Aims were to (i) compare the MET to the BG-sentinel (BGS) trap gold standard approach for sampling host-seeking Aedes vectors; and (ii) characterize the diel activity of Aedes vectors and their association with microclimatic conditions. METHODS: The study was conducted over 12 days in Quinindé (Ecuador) in May 2017. Mosquito sampling stations were set up in the peridomestic area of four houses. On each day of sampling, each house was allocated either a MET or a BGS trap, which were rotated amongst the four houses daily in a Latin square design. Mosquito abundance and microclimatic conditions were recorded hourly at each sampling station between 7:00-19:00 h to assess variation between vector abundance, trapping methods, and environmental conditions. All Aedes aegypti females were tested for the presence of Zika (ZIKV), dengue (DENV) and chikungunya (CHIKV) viruses. RESULTS: A higher number of Ae. aegypti females were found in MET than in BGS collections, although no statistically significant differences in mean Ae. aegypti abundance between trapping methods were found. Both trapping methods indicated female Ae. aegypti had bimodal patterns of host-seeking, being highest during early morning and late afternoon hours. Mean Ae. aegypti daily abundance was negatively associated with daily temperature. No infection by ZIKV, DENV or CHIKV was detected in any Aedes mosquitoes caught by either trapping method. CONCLUSION: We conclude the MET performs at least as well as the BGS standard and offers the additional advantage of direct measurement of per capita human-biting rates. If detection of arboviruses can be confirmed in MET-collected Aedes in future studies, this surveillance method could provide a valuable tool for surveillance and prediction on human arboviral exposure risk.

3.
Malar J ; 18(1): 386, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31791336

RESUMO

BACKGROUND: Measuring human exposure to mosquito bites is a crucial component of vector-borne disease surveillance. For malaria vectors, the human landing catch (HLC) remains the gold standard for direct estimation of exposure. This method, however, is controversial since participants risk exposure to potentially infected mosquito bites. Recently an exposure-free mosquito electrocuting trap (MET) was developed to provide a safer alternative to the HLC. Early prototypes of the MET performed well in Tanzania but have yet to be tested in West Africa, where malaria vector species composition, ecology and behaviour are different. The performance of the MET relative to HLC for characterizing mosquito vector population dynamics and biting behaviour in Burkina Faso was evaluated. METHODS: A longitudinal study was initiated within 12 villages in Burkina Faso in October 2016. Host-seeking mosquitoes were sampled monthly using HLC and MET collections over 14 months. Collections were made at 4 households on each night, with METs deployed inside and outside at 2 houses, and HLC inside and outside at another two. Malaria vector abundance, species composition, sporozoite rate and location of biting (indoor versus outdoor) were recorded. RESULTS: In total, 41,800 mosquitoes were collected over 324 sampling nights, with the major malaria vector being Anopheles gambiae sensu lato (s.l.) complex. Overall the MET caught fewer An. gambiae s.l. than the HLC (mean predicted number of 0.78 versus 1.82 indoors, and 1.05 versus 2.04 outdoors). However, MET collections gave a consistent representation of seasonal dynamics in vector populations, species composition, biting behaviour (location and time) and malaria infection rates relative to HLC. As the relative performance of the MET was somewhat higher in outdoor versus indoor settings, this trapping method slightly underestimated the proportion of bites preventable by LLINs compared to the HLC (MET = 82.08%; HLC = 87.19%). CONCLUSIONS: The MET collected proportionately fewer mosquitoes than the HLC. However, estimates of An. gambiae s.l. density in METs were highly correlated with HLC. Thus, although less sensitive, the MET is a safer alternative than the HLC. Its use is recommended particularly for sampling vectors in outdoor environments where it is most sensitive.

4.
Malar J ; 18(1): 341, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31590669

RESUMO

BACKGROUND: Epidemiological surveys of malaria currently rely on microscopy, polymerase chain reaction assays (PCR) or rapid diagnostic test kits for Plasmodium infections (RDTs). This study investigated whether mid-infrared (MIR) spectroscopy coupled with supervised machine learning could constitute an alternative method for rapid malaria screening, directly from dried human blood spots. METHODS: Filter papers containing dried blood spots (DBS) were obtained from a cross-sectional malaria survey in 12 wards in southeastern Tanzania in 2018/19. The DBS were scanned using attenuated total reflection-Fourier Transform Infrared (ATR-FTIR) spectrometer to obtain high-resolution MIR spectra in the range 4000 cm-1 to 500 cm-1. The spectra were cleaned to compensate for atmospheric water vapour and CO2 interference bands and used to train different classification algorithms to distinguish between malaria-positive and malaria-negative DBS papers based on PCR test results as reference. The analysis considered 296 individuals, including 123 PCR-confirmed malaria positives and 173 negatives. Model training was done using 80% of the dataset, after which the best-fitting model was optimized by bootstrapping of 80/20 train/test-stratified splits. The trained models were evaluated by predicting Plasmodium falciparum positivity in the 20% validation set of DBS. RESULTS: Logistic regression was the best-performing model. Considering PCR as reference, the models attained overall accuracies of 92% for predicting P. falciparum infections (specificity = 91.7%; sensitivity = 92.8%) and 85% for predicting mixed infections of P. falciparum and Plasmodium ovale (specificity = 85%, sensitivity = 85%) in the field-collected specimen. CONCLUSION: These results demonstrate that mid-infrared spectroscopy coupled with supervised machine learning (MIR-ML) could be used to screen for malaria parasites in human DBS. The approach could have potential for rapid and high-throughput screening of Plasmodium in both non-clinical settings (e.g., field surveys) and clinical settings (diagnosis to aid case management). However, before the approach can be used, we need additional field validation in other study sites with different parasite populations, and in-depth evaluation of the biological basis of the MIR signals. Improving the classification algorithms, and model training on larger datasets could also improve specificity and sensitivity. The MIR-ML spectroscopy system is physically robust, low-cost, and requires minimum maintenance.


Assuntos
Teste em Amostras de Sangue Seco/instrumentação , Malária Falciparum/diagnóstico , Plasmodium falciparum/isolamento & purificação , Espectrofotometria Infravermelho/métodos , Aprendizado de Máquina Supervisionado , Humanos , Modelos Logísticos , Malária Falciparum/sangue , Tanzânia
5.
Elife ; 82019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31638575

RESUMO

Human movement into insect vector and wildlife reservoir habitats determines zoonotic disease risks; however, few data are available to quantify the impact of land use on pathogen transmission. Here, we utilise GPS tracking devices and novel applications of ecological methods to develop fine-scale models of human space use relative to land cover to assess exposure to the zoonotic malaria Plasmodium knowlesi in Malaysian Borneo. Combining data with spatially explicit models of mosquito biting rates, we demonstrate the role of individual heterogeneities in local space use in disease exposure. At a community level, our data indicate that areas close to both secondary forest and houses have the highest probability of human P. knowlesi exposure, providing quantitative evidence for the importance of ecotones. Despite higher biting rates in forests, incorporating human movement and space use into exposure estimates illustrates the importance of intensified interactions between pathogens, insect vectors and people around habitat edges.

6.
Wellcome Open Res ; 4: 76, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31544155

RESUMO

Despite the global efforts made in the fight against malaria, the disease is resurging. One of the main causes is the resistance that Anopheles mosquitoes, vectors of the disease, have developed to insecticides. Anopheles must survive for at least 10 days to possibly transmit malaria. Therefore, to evaluate and improve malaria vector control interventions, it is imperative to monitor and accurately estimate the age distribution of mosquito populations as well as their population sizes. Here, we demonstrate a machine-learning based approach that uses mid-infrared spectra of mosquitoes to characterise simultaneously both age and species identity of females of the African malaria vector species Anopheles gambiae and An. arabiensis, using laboratory colonies. Mid-infrared spectroscopy-based prediction of mosquito age structures was statistically indistinguishable from true modelled distributions. The accuracy of classifying mosquitoes by species was 82.6%. The method has a negligible cost per mosquito, does not require highly trained personnel, is rapid, and so can be easily applied in both laboratory and field settings. Our results indicate this method is a promising alternative to current mosquito species and age-grading approaches, with further improvements to accuracy and expansion for use with wild mosquito vectors possible through collection of larger mid-infrared spectroscopy data sets.

7.
Viruses ; 11(9)2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31533247

RESUMO

Biting midges (Culicoides species) are vectors of arboviruses and were responsible for the emergence and spread of Schmallenberg virus (SBV) in Europe in 2011 and are likely to be involved in the emergence of other arboviruses in Europe. Improved surveillance and better understanding of risks require a better understanding of the circulating viral diversity in these biting insects. In this study, we expand the sequence space of RNA viruses by identifying a number of novel RNA viruses from Culicoides impunctatus (biting midge) using a meta-transcriptomic approach. A novel metaviromic pipeline called MetaViC was developed specifically to identify novel virus sequence signatures from high throughput sequencing (HTS) datasets in the absence of a known host genome. MetaViC is a protein centric pipeline that looks for specific protein signatures in the reads and contigs generated as part of the pipeline. Several novel viruses, including an alphanodavirus with both segments, a novel relative of the Hubei sobemo-like virus 49, two rhabdo-like viruses and a chuvirus, were identified in the Scottish midge samples. The newly identified viruses were found to be phylogenetically distinct to those previous known. These findings expand our current knowledge of viral diversity in arthropods and especially in these understudied disease vectors.

8.
Malar J ; 18(1): 187, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-31146762

RESUMO

BACKGROUND: The propensity of different Anopheles mosquitoes to bite humans instead of other vertebrates influences their capacity to transmit pathogens to humans. Unfortunately, determining proportions of mosquitoes that have fed on humans, i.e. Human Blood Index (HBI), currently requires expensive and time-consuming laboratory procedures involving enzyme-linked immunosorbent assays (ELISA) or polymerase chain reactions (PCR). Here, mid-infrared (MIR) spectroscopy and supervised machine learning are used to accurately distinguish between vertebrate blood meals in guts of malaria mosquitoes, without any molecular techniques. METHODS: Laboratory-reared Anopheles arabiensis females were fed on humans, chickens, goats or bovines, then held for 6 to 8 h, after which they were killed and preserved in silica. The sample size was 2000 mosquitoes (500 per host species). Five individuals of each host species were enrolled to ensure genotype variability, and 100 mosquitoes fed on each. Dried mosquito abdomens were individually scanned using attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectrometer to obtain high-resolution MIR spectra (4000 cm-1 to 400 cm-1). The spectral data were cleaned to compensate atmospheric water and CO2 interference bands using Bruker-OPUS software, then transferred to Python™ for supervised machine-learning to predict host species. Seven classification algorithms were trained using 90% of the spectra through several combinations of 75-25% data splits. The best performing model was used to predict identities of the remaining 10% validation spectra, which had not been used for model training or testing. RESULTS: The logistic regression (LR) model achieved the highest accuracy, correctly predicting true vertebrate blood meal sources with overall accuracy of 98.4%. The model correctly identified 96% goat blood meals, 97% of bovine blood meals, 100% of chicken blood meals and 100% of human blood meals. Three percent of bovine blood meals were misclassified as goat, and 2% of goat blood meals misclassified as human. CONCLUSION: Mid-infrared spectroscopy coupled with supervised machine learning can accurately identify multiple vertebrate blood meals in malaria vectors, thus potentially enabling rapid assessment of mosquito blood-feeding histories and vectorial capacities. The technique is cost-effective, fast, simple, and requires no reagents other than desiccants. However, scaling it up will require field validation of the findings and boosting relevant technical capacity in affected countries.


Assuntos
Anopheles/fisiologia , Mosquitos Vetores/fisiologia , Espectrofotometria Infravermelho , Aprendizado de Máquina Supervisionado , Vertebrados/sangue , Animais , Sangue , Galinhas/sangue , Comportamento Alimentar , Feminino , Cabras/sangue , Especificidade de Hospedeiro , Humanos , Modelos Logísticos , Malária/sangue
9.
Stat Methods Med Res ; : 962280219856380, 2019 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-31213191

RESUMO

Ideally, the data used for robust spatial prediction of disease distribution should be both high-resolution and spatially expansive. However, such in-depth and geographically broad data are rarely available in practice. Instead, researchers usually acquire either detailed epidemiological data with high resolution at a small number of active sampling sites, or more broad-ranging but less precise data from passive case surveillance. We propose a novel inferential framework, capable of simultaneously drawing insights from both passive and active data types. We developed a Bayesian latent point process approach, combining active data collection in a limited set of points, where in-depth covariates are measured, with passive case detection, where error-prone, large-scale disease data are accompanied only by coarse or remotely-sensed covariate layers. Using the example of malaria, we tested our method's efficiency under several hypothetical scenarios of reported incidence in different combinations of imperfect detection and spatial complexity of the environmental variables. We provide a simple solution to a widespread problem in spatial epidemiology, combining latent process modelling and spatially autoregressive modelling. By using active sampling and passive case detection in a complementary way, we achieved the best-of-both-worlds, in effect, a formal calibration of spatially extensive, error-prone data by localised, high-quality data.

10.
Proc Biol Sci ; 286(1894): 20182351, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30963872

RESUMO

The complex transmission ecologies of vector-borne and zoonotic diseases pose challenges to their control, especially in changing landscapes. Human incidence of zoonotic malaria ( Plasmodium knowlesi) is associated with deforestation although mechanisms are unknown. Here, a novel application of a method for predicting disease occurrence that combines machine learning and statistics is used to identify the key spatial scales that define the relationship between zoonotic malaria cases and environmental change. Using data from satellite imagery, a case-control study, and a cross-sectional survey, predictive models of household-level occurrence of P. knowlesi were fitted with 16 variables summarized at 11 spatial scales simultaneously. The method identified a strong and well-defined peak of predictive influence of the proportion of cleared land within 1 km of households on P. knowlesi occurrence. Aspect (1 and 2 km), slope (0.5 km) and canopy regrowth (0.5 km) were important at small scales. By contrast, fragmentation of deforested areas influenced P. knowlesi occurrence probability most strongly at large scales (4 and 5 km). The identification of these spatial scales narrows the field of plausible mechanisms that connect land use change and P. knowlesi, allowing for the refinement of disease occurrence predictions and the design of spatially-targeted interventions.


Assuntos
Monitoramento Epidemiológico , Florestas , Aprendizado de Máquina , Malária/epidemiologia , Zoonoses/epidemiologia , Animais , Estudos de Casos e Controles , Estudos Transversais , Agricultura Florestal , Humanos , Malásia/epidemiologia , Modelos Estatísticos , Modelos Teóricos , Plasmodium knowlesi/fisiologia , Tecnologia de Sensoriamento Remoto , Astronave , Análise Espacial
11.
Malar J ; 18(1): 137, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30995912

RESUMO

Following publication of the original article [1], it was flagged that the name of the author Lisa Ranford-Cartwright had been (incorrectly) given as 'Lisa-Ranford Cartwright.

12.
Malar J ; 18(1): 85, 2019 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-30890179

RESUMO

BACKGROUND: Large-scale surveillance of mosquito populations is crucial to assess the intensity of vector-borne disease transmission and the impact of control interventions. However, there is a lack of accurate, cost-effective and high-throughput tools for mass-screening of vectors. METHODS: A total of 750 Anopheles gambiae (Keele strain) mosquitoes were fed Plasmodium falciparum NF54 gametocytes through standard membrane feeding assay (SMFA) and afterwards maintained in insectary conditions to allow for oocyst (8 days) and sporozoite development (14 days). Thereupon, each mosquito was scanned using near infra-red spectroscopy (NIRS) and processed by quantitative polymerase chain reaction (qPCR) to determine the presence of infection and infection load. The spectra collected were randomly assigned to either a training dataset, used to develop calibrations for predicting oocyst- or sporozoite-infection through partial least square regressions (PLS); or to a test dataset, used for validating the calibration's prediction accuracy. RESULTS: NIRS detected oocyst- and sporozoite-stage P. falciparum infections with 88% and 95% accuracy, respectively. This study demonstrates proof-of-concept that NIRS is capable of rapidly identifying laboratory strains of human malaria infection in African mosquito vectors. CONCLUSIONS: Accurate, low-cost, reagent-free screening of mosquito populations enabled by NIRS could revolutionize surveillance and elimination strategies for the most important human malaria parasite in its primary African vector species. Further research is needed to evaluate how the method performs in the field following adjustments in the training datasets to include data from wild-caught infected and uninfected mosquitoes.


Assuntos
Anopheles/parasitologia , Entomologia/métodos , Plasmodium falciparum/crescimento & desenvolvimento , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Animais , Feminino , Programas de Rastreamento/métodos , Carga Parasitária , Reação em Cadeia da Polimerase em Tempo Real
13.
Malar J ; 18(1): 83, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30885205

RESUMO

BACKGROUND: Mosquito biting rates and host preferences are crucial determinants of human exposure to vector-borne diseases and the impact of vector control measures. The human landing catch (HLC) is a gold standard method for measuring human exposure to bites, but presents risks to participants by requiring some exposure to mosquito vectors. Mosquito electrocuting traps (METs) represent an exposure-free alternative to HLCs for measuring human exposure to malaria vectors. However, original MET prototypes were too small for measuring whole-body biting rates on humans or large animals like cattle. Here a much larger MET capable of encompassing humans or cattle was designed, and its performance was evaluated relative to both the original small MET and HLC and for quantifying malaria vector host preferences. METHODS: Human landing catch, small human-baited METs (MET-SH), and large METs baited with either a human (MET-LH) or calves (MET-LC) were simultaneously used to capture wild malaria vectors outdoors in rural southern Tanzania. The four capture methods were compared in a Latin-square design over 20 nights. Malaria vector host preferences were estimated through comparison of the number of mosquitoes caught by large METs baited with either humans or cattle. RESULTS: The MET-LH caught more than twice as many Anopheles arabiensis than either the MET-SH or HLC. It also caught higher number of Anopheles funestus sensu lato (s.l.) compared to the MET-SH or HLC. Similar numbers of An. funestus sensu stricto (s.s.) were caught in MET-LH and MET-SH collections. Catches of An. arabiensis with human or cattle-baited large METs were similar, indicating no clear preference for either host. In contrast, An. funestus s.s. exhibited a strong, but incomplete preference for humans. CONCLUSIONS: METs are a sensitive, practical tool for assessing mosquito biting rates and host preferences, and represent a safer alternative to the HLC. Additionally these findings suggest the HLC underestimate whole-body human exposure. MET collections indicated the An. funestus s.s. population in this setting had a higher than expected attack rate on cattle, potentially making eliminating of this species more difficult with human-targetted control measures. Supplementary vector control tools targetted at livestock may be required to effectively tackle this species.


Assuntos
Anopheles/fisiologia , Entomologia/métodos , Comportamento Alimentar , Especificidade de Hospedeiro , Adulto , Animais , Bovinos , Entomologia/instrumentação , Feminino , Humanos , Masculino , População Rural , Tanzânia , Adulto Jovem
14.
Lancet Infect Dis ; 19(5): e149-e161, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30799251

RESUMO

In the past 5-10 years, Venezuela has faced a severe economic crisis, precipitated by political instability and declining oil revenue. Public health provision has been affected particularly. In this Review, we assess the impact of Venezuela's health-care crisis on vector-borne diseases, and the spillover into neighbouring countries. Between 2000 and 2015, Venezuela witnessed a 359% increase in malaria cases, followed by a 71% increase in 2017 (411 586 cases) compared with 2016 (240 613). Neighbouring countries, such as Brazil, have reported an escalating trend of imported malaria cases from Venezuela, from 1538 in 2014 to 3129 in 2017. In Venezuela, active Chagas disease transmission has been reported, with seroprevalence in children (<10 years), estimated to be as high as 12·5% in one community tested (n=64). Dengue incidence increased by more than four times between 1990 and 2016. The estimated incidence of chikungunya during its epidemic peak is 6975 cases per 100 000 people and that of Zika virus is 2057 cases per 100 000 people. The re-emergence of many vector-borne diseases represents a public health crisis in Venezuela and has the possibility of severely undermining regional disease elimination efforts. National, regional, and global authorities must take action to address these worsening epidemics and prevent their expansion beyond Venezuelan borders.

15.
Parasit Vectors ; 11(1): 635, 2018 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-30545384

RESUMO

BACKGROUND: Natural infections of the endosymbiont bacteria Wolbachia have recently been discovered in populations of the malaria mosquito Anopheles gambiae (s.l.) in Burkina Faso and Mali, West Africa. This Anopheles specific strain wAnga limits the malaria parasite Plasmodium falciparum infections in the mosquito, thus it offers novel opportunities for malaria control. RESULTS: We investigated Wolbachia presence in Anopheles arabiensis and Anopheles funestus, which are the two main malaria vectors in the Kilombero Valley, a malaria endemic region in south-eastern Tanzania. We found 3.1% (n = 65) and 7.5% (n = 147) wAnga infection prevalence in An. arabiensis in mosquitoes collected in 2014 and 2016, respectively, while no infection was detected in An. funestus (n = 41). Phylogenetic analysis suggests that at least two distinct strains of wAnga were detected, both belonging to Wolbachia supergroup A and B. CONCLUSIONS: To our knowledge, this is the first confirmation of natural Wolbachia in malaria vectors in Tanzania, which opens novel questions on the ecological and genetic basis of its persistence and pathogen transmission in the vector hosts. Understanding the basis of interactions between Wolbachia, Anopheles mosquitoes and malaria parasites is crucial for investigation of its potential application as a biocontrol strategy to reduce malaria transmission, and assessment of how natural wAnga infections influence pathogen transmission in different ecological settings.


Assuntos
Anopheles/microbiologia , Malária/transmissão , Mosquitos Vetores/microbiologia , Wolbachia/isolamento & purificação , Animais , Anopheles/classificação , Análise por Conglomerados , DNA Bacteriano/genética , Feminino , Variação Genética , Mosquitos Vetores/classificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Tanzânia , Wolbachia/classificação , Wolbachia/genética
16.
Sci Rep ; 8(1): 13949, 2018 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-30224714

RESUMO

The impact of control measures on mosquito vector fitness and demography is usually estimated from bioassays or indirect variables in the field. Whilst indicative, neither approach is sufficient to quantify the potentially complex response of mosquito populations to combined interventions. Here, large replicated mesocosms were used to measure the population-level response of the malaria vector Anopheles arabiensis to long-lasting insecticidal nets (LLINs) when used in isolation, or combined with insecticidal eave louvers (EL), or treatment of cattle with the endectocide Ivermectin (IM). State-space models (SSM) were fit to these experimental data, revealing that LLIN introduction reduced adult mosquito survival by 91% but allowed population persistence. ELs provided no additional benefit, but IM reduced mosquito fecundity by 59% and nearly eliminated all populations when combined with LLINs. This highlights the value of IM for integrated vector control, and mesocosm population experiments combined with SSM for identifying optimal combinations for vector population elimination.


Assuntos
Anopheles/parasitologia , Malária/parasitologia , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/parasitologia , Animais , Anopheles/efeitos dos fármacos , Bioensaio/métodos , Bovinos , Vetores de Doenças , Feminino , Habitação , Humanos , Resistência a Inseticidas/efeitos dos fármacos , Mosquiteiros Tratados com Inseticida/parasitologia , Inseticidas/farmacologia , Ivermectina/farmacologia , Malária/prevenção & controle , Controle de Mosquitos/métodos , Dinâmica Populacional
17.
Parasit Vectors ; 11(1): 346, 2018 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-29898780

RESUMO

BACKGROUND: Widespread deforestation occurring in the tropics is hypothesized to impact the transmission of vector-borne diseases (VBD). Predicting how environmental changes will impact VBD transmission is dependent on understanding the ecology and behaviour of potential vector species outside of domestic settings. However there are few reliable sampling tools for measuring the habitat preference and host choice of mosquito vectors; with almost none suitable for sampling recently blood-fed, resting mosquitoes. This study evaluated the use of two mosquito traps: the resting bucket (RB) and sticky resting bucket (SRB) traps relative to CDC backpack aspiration (CDC) for sampling mosquitoes resting in a range of habitats representing a gradient of deforestation. Eight habitats were selected for sampling around two villages in Kudat District, Malaysian Borneo, to reflect the range of habitats available to mosquitoes in and around human dwellings, and nearby forest habitats where reservoir hosts are present: secondary forest (edge, interior and canopy); plantations (palm and rubber); and human settlements (inside, under and around houses). RESULTS: Over 31 days, 2243 mosquitoes were collected in 5748 discrete collections. Nine mosquito genera were sampled with Aedes and Culex species being present in all habitats and most abundant. RB and CDC backpack aspiration were most efficient for sampling Culex whereas CDC backpack aspiration and SRB were most efficient for Aedes. Most Aedes identified to species level were Ae. albopictus (91%), with their abundance being highest in forest edge habitats. In contrast, Culex were most abundant under houses. Most blood-fed mosquitoes (76%) were found in human settlements; with humans and chickens being the only blood source. CONCLUSIONS: RB and SRB traps proved capable of sampling mosquitoes resting in all sampled habitats. However, sampling efficiency was generally low (c.0.1 per trap per day), necessitating traps to be deployed in high numbers for mosquito detection. None of the traps were effective for sampling zoonotic malaria vectors; however, SRB collected relatively higher numbers of the dengue vector Ae. albopictus. The higher abundance of mosquitoes in forest edge habitats indicates the potential value of these traps for investigating sylvatic dengue transmission. This study has demonstrated the merits in application of simple resting traps for characterising mosquito vector resting behaviour outside of the home.


Assuntos
Aedes/fisiologia , Culex/fisiologia , Controle de Mosquitos/métodos , Mosquitos Vetores/fisiologia , Aedes/classificação , Animais , Bornéu , Culex/química , Ecossistema , Comportamento Alimentar , Feminino , Humanos , Malásia , Masculino , Controle de Mosquitos/instrumentação , Mosquitos Vetores/classificação
18.
Sci Rep ; 8(1): 4188, 2018 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-29520067

RESUMO

Artificial infection of mosquitoes with the endosymbiont bacteria Wolbachia can interfere with malaria parasite development. Therefore, the release of Wolbachia-infected mosquitoes has been proposed as a malaria control strategy. However, Wolbachia effects on vector competence are only partly understood, as indicated by inconsistent effects on malaria infection reported under laboratory conditions. Studies of naturally-occurring Wolbachia infections in wild vector populations could be useful to identify the ecological and evolutionary conditions under which these endosymbionts can block malaria transmission. Here we demonstrate the occurrence of natural Wolbachia infections in three species of black fly (genus Simulium), which is a main vector of the avian malaria parasite Leucocytozoon. Prevalence of Leucocytozoon was high (25%), but the nature and magnitude of its association with Wolbachia differed between black fly species. Wolbachia infection was positively associated with avian malaria infection in S. cryophilum, negatively associated in S. aureum, and unrelated in S. vernum. These differences suggest that Wolbachia interacts with the parasite in a vector host species-specific manner. This provides a useful model system for further study of how Wolbachia influences vector competence. Such knowledge, including the possibility of undesirable positive association, is required to guide endosymbiont based control methods.


Assuntos
Haemosporida/fisiologia , Insetos Vetores , Malária Aviária , Infecções por Rickettsiaceae , Simuliidae , Wolbachia/fisiologia , Animais , Aves , Insetos Vetores/microbiologia , Insetos Vetores/parasitologia , Malária Aviária/epidemiologia , Malária Aviária/microbiologia , Malária Aviária/parasitologia , Malária Aviária/transmissão , Infecções por Rickettsiaceae/epidemiologia , Infecções por Rickettsiaceae/parasitologia , Infecções por Rickettsiaceae/transmissão , Simuliidae/microbiologia , Simuliidae/parasitologia , Especificidade da Espécie
19.
Parasitology ; 145(1): 101-110, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28345507

RESUMO

Plasmodium knowlesi is increasingly recognized as a major cause of malaria in Southeast Asia. Anopheles leucosphyrous group mosquitoes transmit the parasite and natural hosts include long-tailed and pig-tailed macaques. Despite early laboratory experiments demonstrating successful passage of infection between humans, the true role that humans play in P. knowlesi epidemiology remains unclear. The threat posed by its introduction into immunologically naïve populations is unknown despite being a public health priority for this region. A two-host species mathematical model was constructed to analyse this threat. Global sensitivity analysis using Monte Carlo methods highlighted the biological processes of greatest influence to transmission. These included parameters known to be influential in classic mosquito-borne disease models (e.g. vector longevity); however, interesting ecological components that are specific to this system were also highlighted: while local vectors likely have intrinsic preferences for certain host species, how plastic these preferences are, and how this is shaped by local conditions, are key determinants of parasite transmission potential. Invasion analysis demonstrates that this behavioural plasticity can qualitatively impact the probability of an epidemic sparked by imported infection. Identifying key vector sub/species and studying their biting behaviours constitute important next steps before models can better assist in strategizing disease control.


Assuntos
Anopheles/fisiologia , Macaca , Malária/transmissão , Malária/veterinária , Doenças dos Macacos/transmissão , Mosquitos Vetores/fisiologia , Plasmodium knowlesi/fisiologia , Animais , Anopheles/parasitologia , Interações Hospedeiro-Parasita , Humanos , Malária/parasitologia , Modelos Biológicos , Doenças dos Macacos/parasitologia , Método de Monte Carlo , Mosquitos Vetores/parasitologia
20.
Parasit Vectors ; 10(1): 338, 2017 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-28720113

RESUMO

BACKGROUND: Plasmodium knowlesi is found in macaques and is the only major zoonotic malaria to affect humans. Transmission of P. knowlesi between people and macaques depends on the host species preferences and feeding behavior of mosquito vectors. However, these behaviours are difficult to measure due to the lack of standardized methods for sampling potential vectors attracted to different host species. This study evaluated electrocuting net traps as a safe, standardised method for sampling P. knowlesi vectors attracted to human and macaque hosts. Field experiments were conducted within a major focus on P. knowlesi transmission in Malaysian Borneo to compare the performance of human (HENET) or macaque (MENET) odour-baited electrocuting nets, human landing catches (HLC) and monkey-baited traps (MBT) for sampling mosquitoes. The abundance and diversity of Anopheles sampled by different methods were compared over 40 nights, with a focus on the P. knowlesi vector Anopheles balabancensis. RESULTS: HLC caught more An. balabacensis than any other method (3.6 per night). In contrast, no An. balabacensis were collected in MBT collections, which generally performed poorly for all mosquito taxa. Anopheles vector species including An. balabacensis were sampled in both HENET and MENET collections, but at a mean abundance of less than 1 per night. There was no difference between HENET and MENET in the overall abundance (P = 0.05) or proportion (P = 0.7) of An. balabacensis. The estimated diversity of Anopheles species was marginally higher in electrocuting net than HLC collections, and similar in collections made with humans or monkey hosts. CONCLUSIONS: Host-baited electrocuting nets had moderate success for sampling known zoonotic malaria vectors. The primary vector An. balabacensis was collected with electrocuting nets baited both with humans and macaques, but at a considerably lower density than the HLC standard. However, electrocuting nets were considerably more successful than monkey-baited traps and representatively characterised anopheline species diversity. Consequently, their use allows inferences about relative mosquito attraction to be meaningfully interpreted while eliminating confounding factors due to trapping method. On this basis, electrocuting net traps should be considered as a useful standardised method for investigating vector contact with humans and wildlife reservoirs.


Assuntos
Anopheles/fisiologia , Entomologia/métodos , Mosquitos Vetores/fisiologia , Animais , Anopheles/classificação , Bornéu , Entomologia/normas , Comportamento Alimentar , Humanos , Macaca , Mosquitos Vetores/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA