Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 601(7891): 35-44, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34987212

RESUMO

Superconductivity is a remarkably widespread phenomenon that is observed in most metals cooled to very low temperatures. The ubiquity of such conventional superconductors, and the wide range of associated critical temperatures, is readily understood in terms of the well-known Bardeen-Cooper-Schrieffer theory. Occasionally, however, unconventional superconductors are found, such as the iron-based materials, which extend and defy this understanding in unexpected ways. In the case of the iron-based superconductors, this includes the different ways in which the presence of multiple atomic orbitals can manifest in unconventional superconductivity, giving rise to a rich landscape of gap structures that share the same dominant pairing mechanism. In addition, these materials have also led to insights into the unusual metallic state governed by the Hund's interaction, the control and mechanisms of electronic nematicity, the impact of magnetic fluctuations and quantum criticality, and the importance of topology in correlated states. Over the fourteen years since their discovery, iron-based superconductors have proven to be a testing ground for the development of novel experimental tools and theoretical approaches, both of which have extensively influenced the wider field of quantum materials.

2.
Phys Rev Lett ; 127(4): 047001, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34355931

RESUMO

We show that unconventional nematic superconductors with multicomponent order parameter in lattices with three- and sixfold rotational symmetries support a charge-4e vestigial superconducting phase above T_{c}. The charge-4e state, which is a condensate of four-electron bound states that preserve the rotational symmetry of the lattice, is nearly degenerate with a competing vestigial nematic state, which is nonsuperconducting and breaks the rotational symmetry. This robust result is the consequence of a hidden discrete symmetry in the Ginzburg-Landau theory, which permutes quantities in the gauge sector and in the crystalline sector of the symmetry group. We argue that random strain generally favors the charge-4e state over the nematic phase, as it acts as a random mass to the former but as a random field to the latter. Thus, we propose that two-dimensional inhomogeneous systems displaying nematic superconductivity, such as twisted bilayer graphene, provide a promising platform to realize the elusive charge-4e superconducting phase.

3.
Science ; 372(6539): 264-271, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33859029

RESUMO

Strongly interacting electrons in solid-state systems often display multiple broken symmetries in the ground state. The interplay between different order parameters can give rise to a rich phase diagram. We report on the identification of intertwined phases with broken rotational symmetry in magic-angle twisted bilayer graphene (TBG). Using transverse resistance measurements, we find a strongly anisotropic phase located in a "wedge" above the underdoped region of the superconducting dome. Upon its crossing with the superconducting dome, a reduction of the critical temperature is observed. Furthermore, the superconducting state exhibits an anisotropic response to a direction-dependent in-plane magnetic field, revealing nematic ordering across the entire superconducting dome. These results indicate that nematic fluctuations might play an important role in the low-temperature phases of magic-angle TBG.

4.
Sci Adv ; 6(32): eaba8834, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32821828

RESUMO

Motivated by recent reports of nematic order in twisted bilayer graphene (TBG), we investigate the impact of the triangular moiré superlattice degrees of freedom on nematicity. In TBG, the nematic order parameter is not Ising like, as in tetragonal crystals, but has a three-state Potts character related to the threefold rotational symmetry (C 3z ) of the moiré superlattice. We find that, even in the presence of static strain that explicitly breaks the C 3z symmetry, the system can still undergo a nematic-flop phase transition that spontaneously breaks in-plane twofold rotations. Moreover, elastic fluctuations, manifested as acoustic phonons, mediate a nemato-orbital coupling that ties the nematic director orientation to certain soft directions in momentum space, rendering the Potts-nematic transition mean field and first order. In contrast to the case of rigid crystals, the Fermi surface hot spots associated with these soft directions are maximally coupled to low-energy nematic fluctuations in the moiré superlattice case.

5.
Sci Adv ; 6(31): eabb7721, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32832693

RESUMO

Increasingly impressive demonstrations of voltage-controlled magnetism have been achieved recently, highlighting potential for low-power data processing and storage. Magnetoionic approaches appear particularly promising, electrolytes and ionic conductors being capable of on/off control of ferromagnetism and tuning of magnetic anisotropy. A clear limitation, however, is that these devices either electrically tune a known ferromagnet or electrically induce ferromagnetism from another magnetic state, e.g., antiferromagnetic. Here, we demonstrate that ferromagnetism can be voltage-induced even from a diamagnetic (zero-spin) state suggesting that useful magnetic phases could be electrically induced in "nonmagnetic" materials. We use ionic liquid-gated diamagnetic FeS2 as a model system, showing that as little as 1 V induces a reversible insulator-metal transition by electrostatic surface inversion. Anomalous Hall measurements then reveal electrically tunable surface ferromagnetism at up to 25 K. Density functional theory-based modeling explains this in terms of Stoner ferromagnetism induced via filling of a narrow e g band.

6.
Nat Mater ; 19(10): 1062-1067, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32424369

RESUMO

Nematic order is the breaking of rotational symmetry in the presence of translational invariance. While originally defined in the context of liquid crystals, the concept of nematic order has arisen in crystalline matter with discrete rotational symmetry, most prominently in the tetragonal Fe-based superconductors where the parent state is four-fold symmetric. In this case the nematic director takes on only two directions, and the order parameter in such 'Ising-nematic' systems is a simple scalar. Here, using a spatially resolved optical polarimetry technique, we show that a qualitatively distinct nematic state arises in the triangular lattice antiferromagnet Fe1/3NbS2. The crucial difference is that the nematic order on the triangular lattice is a [Formula: see text] or three-state Potts-nematic order parameter. As a consequence, the anisotropy axes of response functions such as the resistivity tensor can be continuously reoriented by external perturbations. This discovery lays the groundwork for devices that exploit analogies with nematic liquid crystals.

7.
Proc Natl Acad Sci U S A ; 117(12): 6424-6429, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32165540

RESUMO

Electronic nematicity, a correlated state that spontaneously breaks rotational symmetry, is observed in several layered quantum materials. In contrast to their liquid-crystal counterparts, the nematic director cannot usually point in an arbitrary direction (XY nematics), but is locked by the crystal to discrete directions (Ising nematics), resulting in strongly anisotropic fluctuations above the transition. Here, we report on the observation of nearly isotropic XY-nematic fluctuations, via elastoresistance measurements, in hole-doped Ba1-x Rb x Fe2As2 iron-based superconductors. While for [Formula: see text], the nematic director points along the in-plane diagonals of the tetragonal lattice, for [Formula: see text], it points along the horizontal and vertical axes. Remarkably, for intermediate doping, the susceptibilities of these two symmetry-irreducible nematic channels display comparable Curie-Weiss behavior, thus revealing a nearly XY-nematic state. This opens a route to assess this elusive electronic quantum liquid-crystalline state.

8.
Phys Rev Lett ; 125(24): 247001, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33412040

RESUMO

High-temperature superconductivity emerges in many different quantum materials, often in regions of the phase diagram where the electronic kinetic energy is comparable to the electron-electron repulsion. Describing such intermediate-coupling regimes has proven challenging as standard perturbative approaches are inapplicable. Here, we employ quantum Monte Carlo methods to solve a multiband Hubbard model that does not suffer from the sign problem and in which only repulsive interband interactions are present. In contrast to previous sign-problem-free studies, we treat magnetic, superconducting, and charge degrees of freedom on an equal footing. We find an antiferromagnetic dome accompanied by a metal-to-insulator crossover line in the intermediate-coupling regime, with a smaller superconducting dome appearing in the metallic region. Across the antiferromagnetic dome, the magnetic fluctuations change from overdamped in the metallic region to propagating in the insulating region. Our findings shed new light on the intertwining between superconductivity, magnetism, and charge correlations in quantum materials.

9.
Nat Phys ; 16(3): 346-350, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33505513

RESUMO

The electronic nematic phase-in which electronic degrees of freedom lower the crystal rotational symmetry-is commonly observed in high-temperature superconductors. However, understanding the role of nematicity and nematic fluctuations in Cooper pairing is often made more complicated by the coexistence of other orders, particularly long-range magnetic order. Here we report the enhancement of superconductivity in a model electronic nematic system that is not magnetic, and show that the enhancement is directly born out of strong nematic fluctuations associated with a quantum phase transition. We present measurements of the resistance as a function of strain in Ba1-x Sr x Ni2As2 to show that strontium substitution promotes an electronically driven nematic order in this system. In addition, the complete suppression of that order to absolute zero temperature leads to an enhancement of the pairing strength, as evidenced by a sixfold increase in the superconducting transition temperature. The direct relation between enhanced pairing and nematic fluctuations in this model system, as well as the interplay with a unidirectional charge-density-wave order comparable to that found in the cuprates, offers a means to investigate the role of nematicity in strengthening superconductivity.

10.
Phys Rev Lett ; 123(14): 146402, 2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-31702174

RESUMO

Recent experiments reported an unusual nematic behavior of heavily hole-doped pnictides AFe_{2}As_{2}, with alkali A=Rb, Cs. In contrast to the B_{2g} nematic order of the parent AeFe_{2}As_{2} compounds (with alkaline earth Ae=Sr, Ba), characterized by unequal nearest-neighbor Fe-Fe bonds, in the hole-doped systems nematic order is observed in the B_{1g} channel, characterized by unequal next-nearest-neighbor Fe-Fe (diagonal Fe-As-Fe) bonds. In this Letter, using density functional theory, we attribute this behavior to the evolution of the magnetic ground state along the series Ae_{1-x}A_{x}Fe_{2}As_{2}, from single stripes for small x to double stripes for large x. Our simulations using the reduced Stoner theory show that fluctuations of Fe moments are essential for the stability of the double-stripe configuration. We propose that the change in the nature of the magnetic ground state is responsible for the change in the symmetry of the vestigial nematic order that it supports.

11.
Phys Rev Lett ; 121(12): 127002, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30296139

RESUMO

Although discovered many decades ago, superconductivity in doped SrTiO_{3} remains a topic of intense research. Recent experiments revealed that, upon increasing the carrier concentration, multiple bands cross the Fermi level, signaling the onset of Lifshitz transitions. Interestingly, T_{c} was observed to be suppressed across the Lifshitz transition of oxygen-deficient SrTiO_{3}; a similar behavior was also observed in gated LaAlO_{3}/SrTiO_{3} interfaces. Such a behavior is difficult to explain in the clean theory of two-band superconductivity, as the additional electronic states provided by the second band should enhance T_{c}. Here, we show that this unexpected behavior can be explained by the strong pair-breaking effect promoted by disorder, which takes place if the interband pairing interaction is subleading and repulsive. A consequence of this scenario is that, upon moving away from the Lifshitz transition, the two-band superconducting state changes from opposite-sign gaps to same-sign gaps.

12.
Phys Rev Lett ; 121(5): 057001, 2018 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-30118255

RESUMO

Recent experiments in iron pnictide superconductors reveal that, as the putative magnetic quantum critical point is approached, different types of magnetic order coexist over a narrow region of the phase diagram. Although these magnetic configurations share the same wave vectors, they break distinct symmetries of the lattice. Importantly, the highest superconducting transition temperature takes place close to this proliferation of near-degenerate magnetic states. In this Letter, we employ a renormalization group calculation to show that such a behavior naturally arises due to the effects of spin-orbit coupling on the quantum magnetic fluctuations. Formally, the enhanced magnetic degeneracy near the quantum critical point is manifested as a stable Gaussian fixed point with a large basin of attraction. Implications of our findings to the superconductivity of the iron pnictides are also discussed.

13.
Phys Rev Lett ; 120(26): 267001, 2018 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-30004771

RESUMO

Bulk FeSe is a special iron-based material in which superconductivity emerges inside a well-developed nematic phase. We present a microscopic model for this nematic superconducting state, which takes into account the mixing between s-wave and d-wave pairing channels and the changes in the orbital spectral weight promoted by the sign-changing nematic order parameter. We show that nematicity only weakly affects T_{c}, but gives rise to cos2θ variation of the pairing gap on the hole pocket, whose magnitude and size agrees with angle resolved photoemission spectroscopy and STM data. We further show that nematicity increases the weight of the d_{xz} orbital on the hole pocket, and increases (reduces) the weight of the d_{xy} orbital on the Y (X) electron pocket.

14.
Front Mol Neurosci ; 11: 125, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867340

RESUMO

Mercury is a toxic metal that can be found in the environment in three different forms - elemental, organic and inorganic. Inorganic mercury has a lower liposolubility, which results in a lower organism absorption and reduced passage through the blood-brain barrier. For this reason, exposure models that use inorganic mercury in rats in order to evaluate its effects on the central nervous system are rare, especially in adult subjects. This study investigated if a chronic exposure to low doses of mercury chloride (HgCl2), an inorganic form of mercury, is capable of promoting motor alterations and neurodegenerative in the motor cortex of adult rats. Forty animals were exposed to a dose of 0.375 mg/kg/day, for 45 days. They were then submitted to motor evaluation and euthanized to collect the motor cortex. Measurement of mercury deposited in the brain parenchyma, evaluation of oxidative balance, quantification of cellular cytotoxicity and apoptosis and density of mature neurons and astrocytes of the motor cortex were performed. It was observed that chronic exposure to inorganic mercury caused a decrease in balance and fine motor coordination, formation of mercury deposits and oxidative stress verified by the increase of lipoperoxidation and nitrite concentration and a decrease of the total antioxidant capacity. In addition, we found that this model of exposure to inorganic mercury caused cell death by cytotoxicity and induction of apoptosis with a decreased number of neurons and astrocytes in the motor cortex. Our results provide evidence that exposure to inorganic mercury in low doses, even in spite of its poor ability to cross biological barriers, is still capable of inducing motor deficits, cell death by cytotoxicity and apoptosis, and oxidative stress in the motor cortex of adult rats.

15.
Front Physiol ; 9: 667, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29937732

RESUMO

Background: Physical exercise is a systematic sequence of movements executed with a predefined purpose. This muscular activity impacts not only on circulatory adaptations, but also neuronal integration with the potential to influence cognition. The aim of this review was to determine whether the literature supports the idea that physical exercise promotes cognitive benefits in healthy adults. Methods: A systematic search for relevant articles was performed according to the Preferred Reporting Items for Systematic Review and Meta-Analysis criteria using available databases (PubMed, LILACS, Scopus, Web of Science, The Cochrane Library, OpenGrey, Google Scholar and CENTRAL). The search terms included "humans" or "adults" or "cognition" or "awareness" or "cognitive dissonance" or "cognitive reserve" or "comprehension" or "consciousness" and "motor activity" or "exercise" or "physical fitness," and not "aged" or "nervous system diseases," with the purpose of finding associations between moderate physical exercise and cognition. A methodological quality and risk of bias unit assessed the eligibility of articles. Results: A total of 7179 articles were identified. Following review and quality assessment, three articles were identified to fulfill the inclusion criteria. An association between moderate physical exercise and cognition was observed. Improvements in cognitive parameters such as reduced simple reaction time, improved response precision and working memory were identified among the included articles. Conclusion: This systematic review found that moderate physical exercise improves cognition.

16.
Phys Rev Lett ; 120(24): 247002, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29956998

RESUMO

We investigate the interplay between charge order and superconductivity near an antiferromagnetic quantum critical point using sign-problem-free Quantum Monte Carlo simulations. We establish that, when the electronic dispersion is particle-hole symmetric, the system has an emergent SU(2) symmetry that implies a degeneracy between d-wave superconductivity and charge order with d-wave form factor. Deviations from particle-hole symmetry, however, rapidly lift this degeneracy, despite the fact that the SU(2) symmetry is preserved at low energies. As a result, we find a strong suppression of charge order caused by the competing, leading superconducting instability. Across the antiferromagnetic phase transition, we also observe a shift in the charge order wave vector from diagonal to axial. We discuss the implications of our results to the universal phase diagram of antiferromagnetic quantum-critical metals and to the elucidation of the charge order experimentally observed in the cuprates.

17.
Proc Natl Acad Sci U S A ; 114(51): 13430-13434, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29208710

RESUMO

The paradigmatic example of a continuous quantum phase transition is the transverse field Ising ferromagnet. In contrast to classical critical systems, whose properties depend only on symmetry and the dimension of space, the nature of a quantum phase transition also depends on the dynamics. In the transverse field Ising model, the order parameter is not conserved, and increasing the transverse field enhances quantum fluctuations until they become strong enough to restore the symmetry of the ground state. Ising pseudospins can represent the order parameter of any system with a twofold degenerate broken-symmetry phase, including electronic nematic order associated with spontaneous point-group symmetry breaking. Here, we show for the representative example of orbital-nematic ordering of a non-Kramers doublet that an orthogonal strain or a perpendicular magnetic field plays the role of the transverse field, thereby providing a practical route for tuning appropriate materials to a quantum critical point. While the transverse fields are conjugate to seemingly unrelated order parameters, their nontrivial commutation relations with the nematic order parameter, which can be represented by a Berry-phase term in an effective field theory, intrinsically intertwine the different order parameters.

18.
Phys Rev Lett ; 118(10): 106801, 2017 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-28339226

RESUMO

Stimulated by experimental advances in electrolyte gating methods, we investigate theoretically percolation in thin films of inhomogeneous complex oxides, such as La_{1-x}Sr_{x}CoO_{3} (LSCO), induced by a combination of bulk chemical and surface electrostatic doping. Using numerical and analytical methods, we identify two mechanisms that describe how bulk dopants reduce the amount of electrostatic surface charge required to reach percolation: (i) bulk-assisted surface percolation and (ii) surface-assisted bulk percolation. We show that the critical surface charge strongly depends on the film thickness when the film is close to the chemical percolation threshold. In particular, thin films can be driven across the percolation transition by modest surface charge densities. If percolation is associated with the onset of ferromagnetism, as in LSCO, we further demonstrate that the presence of critical magnetic clusters extending from the film surface into the bulk results in considerable enhancement of the saturation magnetization, with pronounced experimental consequences. These results should significantly guide experimental work seeking to verify gate-induced percolation transitions in such materials.

19.
Nat Commun ; 8: 14317, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28176779

RESUMO

The combination of electronic correlations and Fermi surfaces with multiple nesting vectors can lead to the appearance of complex multi-Q magnetic ground states, hosting unusual states such as chiral density waves and quantum Hall insulators. Distinguishing single-Q and multi-Q magnetic phases is however a notoriously difficult experimental problem. Here we propose theoretically that the local density of states (LDOS) near a magnetic impurity, whose orientation may be controlled by an external magnetic field, can be used to map out the detailed magnetic configuration of an itinerant system and distinguish unambiguously between single-Q and multi-Q phases. We demonstrate this concept by computing and contrasting the LDOS near a magnetic impurity embedded in three different magnetic ground states relevant to iron-based superconductors-one single-Q and two double-Q phases. Our results open a promising avenue to investigate the complex magnetic configurations in itinerant systems via standard scanning tunnelling spectroscopy, without requiring spin-resolved capability.

20.
Rep Prog Phys ; 80(1): 014503, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27876709

RESUMO

The development of sensible microscopic models is essential to elucidate the normal-state and superconducting properties of the iron-based superconductors. Because these materials are mostly metallic, a good starting point is an effective low-energy model that captures the electronic states near the Fermi level and their interactions. However, in contrast to cuprates, iron-based high-T c compounds are multi-orbital systems with Hubbard and Hund interactions, resulting in a rather involved 10-orbital lattice model. Here we review different minimal models that have been proposed to unveil the universal features of these systems. We first review minimal models defined solely in the orbital basis, which focus on a particular subspace of orbitals, or solely in the band basis, which rely only on the geometry of the Fermi surface. The former, while providing important qualitative insight into the role of the orbital degrees of freedom, do not distinguish between high-energy and low-energy sectors and, for this reason, generally do not go beyond mean-field. The latter allow one to go beyond mean-field and investigate the interplay between superconducting and magnetic orders as well as Ising-nematic order. However, they cannot capture orbital-dependent features like spontaneous orbital order. We then review recent proposals for a minimal model that operates in the band basis but fully incorporates the orbital composition and symmetries of the low-energy excitations. We discuss the results of the renormalization group study of such a model, particularly of the interplay between superconductivity, magnetism, and spontaneous orbital order, and compare theoretical predictions with experiments on iron pnictides and chalcogenides. We also discuss the impact of the glide-plane symmetry on the low-energy models, highlighting the key role played by the spin-orbit coupling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...