Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Nanoscale ; 13(32): 13665-13680, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34477642

RESUMO

Spinel ferrite nanocubes (NCs), consisting of pure iron oxide or mixed ferrites, are largely acknowledged for their outstanding performance in magnetic hyperthermia treatment (MHT) or magnetic resonance imaging (MRI) applications while their magnetic particle imaging (MPI) properties, particularly for this peculiar shape different from the conventional spherical nanoparticles (NPs), are relatively less investigated. In this work, we report on a non-hydrolytic synthesis approach to prepare mixed transition metal ferrite NCs. A series of NCs of mixed zinc-cobalt-ferrite were prepared and their magnetic theranostic properties were compared to those of cobalt ferrite or zinc ferrite NCs of similar sizes. For each of the nanomaterials, the synthesis parameters were adjusted to obtain NCs in the size range from 8 up to 15 nm. The chemical and structural nature of the different NCs was correlated to their magnetic properties. In particular, to evaluate magnetic losses, we compared the data obtained from calorimetric measurements to the data measured by dynamic magnetic hysteresis obtained under alternating magnetic field (AMF) excitation. Cobalt-ferrite and zinc-cobalt ferrite NCs showed high specific adsorption rate (SAR) values in aqueous solutions but their heating ability was drastically suppressed once in viscous media even for NCs as small as 12 nm. On the other hand, non-stoichiometric zinc-ferrite NCs showed significant but lower SAR values than the other ferrites, but these zinc-ferrite NCs preserved almost unaltered their heating trend in viscous environments. Also, the presence of zinc in the crystal lattice of zinc-cobalt ferrite NCs showed increased contrast enhancement for MRI with the highest T2 relaxation time and in the MPI signal with the best point spread function and signal-to-noise ratio in comparison to the analogue cobalt-ferrite NC. Among the different compositions investigated, non-stoichiometric zinc-ferrite NCs can be considered the most promising material as a multifunctional theranostic platform for MHT, MPI and MRI regardless of the media viscosity in which they will be applied, while ensuring the best biocompatibility with respect to the cobalt ferrite NCs.

2.
ACS Appl Mater Interfaces ; 13(14): 15959-15972, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33797220

RESUMO

Cancer stem cells (CSCs) are the tumor cell subpopulation responsible for resistance to chemotherapy, tumor recurrence, and metastasis. An efficient therapy must act on low proliferating quiescent-CSCs (q-CSCs). We here investigate the effect of magnetic hyperthermia (MHT) in combination with local chemotherapy as a dual therapy to inhibit patient-derived colorectal qCR-CSCs. We apply iron oxide nanocubes as MHT heat mediators, coated with a thermoresponsive polymer (TR-Cubes) and loaded with DOXO (TR-DOXO) as a chemotherapeutic agent. The thermoresponsive polymer releases DOXO only at a temperature above 44 °C. In colony-forming assays, the cells exposed to TR-Cubes with MHT reveal that qCR-CSCs struggle to survive the heat damage and, with a due delay, restart the division of dormant cells. The eradication of qCR-CSCs with a complete stop of the colony formation was achieved only with TR-DOXO when exposed to MHT. The in vivo tumor formation study confirms the combined effects of MHT with heat-mediated drug release: only the group of animals that received the CR-CSCs pretreated, in vitro, with TR-DOXO and MHT lacked the formation of tumor even after several months. For DOXO-resistant CR-CSCs cells, the same results were shown, in vitro, when choosing the drug oxaliplatin rather than DOXO and applying MHT. These findings emphasize the potential of our nanoplatforms as an effective patient-personalized cancer treatment against qCR-CSCs.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Neoplasias Colorretais/patologia , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos , Hipertermia Induzida , Nanopartículas de Magnetita/química , Células-Tronco Neoplásicas/patologia , Terapia Combinada , Humanos
3.
Chemosphere ; 278: 130364, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33831685

RESUMO

Herein, we demonstrate, for the first time, that covalent organic frameworks (COFs) can be efficient adsorbents for the screening of pharmaceuticals in real water samples, obtaining highly representative data on their occurrence and avoiding the cost of carrying high volume samples and tedious and costly clean-up and preconcentration steps. Of the 23 pharmaceuticals found present in the water samples from the Tagus river estuary using state-of-the-art solid-phase extraction (SPE), 22 were also detected (adsorbed and recovered for analysis) using a COF as the adsorbent material with adsorption efficiency of over 80% for nearly all compounds. In specific cases, acidification of the water samples was identified to lead to a dramatic loss of adsorption efficiency, underlining the effect of sample pre-treatment on the results. The COF efficiently adsorbed (>80%) 19 pharmaceuticals without acid treatment of the sample, highlighting the potential of this class of materials for representative in situ passive adsorption of pharmaceuticals, making this material suitable for being used in water monitoring programs as a simple and cost-efficient sample preparation procedure. In the case of α-hydroxyalprazolam and diclofenac, the COF outperformed the SPE procedure in the recovery efficiency. Although further efforts should be made in tailoring the desorption of the pharmaceuticals from the COF by using different solvents or solvent mixtures, we propose COFs as convenient adsorbent for broad-scope screening and as an efficient adsorbent material to target specific classes of pharmaceuticals. To the best of our knowledge, this is the first study on the use of COFs for contaminant screening in real, naturally contaminated water samples.


Assuntos
Estruturas Metalorgânicas , Preparações Farmacêuticas , Adsorção , Estuários , Extração em Fase Sólida
4.
ACS Appl Mater Interfaces ; 13(13): 15053-15063, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33760592

RESUMO

Microcystins (MCs), produced by Microcystis sp, are the most commonly detected cyanotoxins in freshwater, and due to their toxicity, worldwide distribution, and persistence in water, an improvement in the monitoring programs for their early detection and removal from water is necessary. To this end, we investigate the performance of three covalent organic frameworks (COFs), TpBD-(CF3)2, TpBD-(NO2)2, and TpBD-(NH2)2, for the adsorption of the most common and/or toxic MC derivatives, MC-LR, MC-RR, MC-LA, and MC-YR, from water. While MC-LR and MC-YR can be efficiently adsorbed using all three COF derivatives, high adsorption efficiencies were found for the most lipophilic toxin, MC-LA, with TpBD-(NH2)2, and the most hydrophilic one, MC-RR, with TpBD-(NO2). Theoretical calculations revealed that MC-LA and MC-RR have a tendency to be located mainly on the COF surface, interacting through hydrogen bonds with the amino and nitro functional groups of TpBD-(NH2)2 and TpBD-(NO2)2, respectively. TpBD-(NO2)2 outperforms the adsorbent materials reported for the capture of MC-RR, resulting in an increase in the maximum adsorption capacity by one order of magnitude. TpBD-(NH2)2 is reported as the first efficient adsorbent material for the capture of MC-LA. Large differences in desorption efficiencies were observed for the MCs with different COFs, highlighting the importance of COF-adsorbate interactions in the material recovery. Herein we show that efficient capture of these toxins from water can be achieved through the proper selection of the COF material. More importantly, this study demonstrates that by careful choice of COF functionalities, specific compounds can be targeted or excluded from a group of analogues, providing insight into the design of more efficient and selective adsorbent materials.


Assuntos
Estruturas Metalorgânicas/química , Microcistinas/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Microcystis/química , Modelos Moleculares , Purificação da Água/métodos
5.
Adv Mater ; 32(45): e2003712, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33002227

RESUMO

Nanoparticle-based magnetic hyperthermia is a well-known thermal therapy platform studied to treat solid tumors, but its use for monotherapy is limited due to incomplete tumor eradication at hyperthermia temperature (45 °C). It is often combined with chemotherapy for obtaining a more effective therapeutic outcome. Cubic-shaped cobalt ferrite nanoparticles (Co-Fe NCs) serve as magnetic hyperthermia agents and as a cytotoxic agent due to the known cobalt ion toxicity, allowing the achievement of both heat and cytotoxic effects from a single platform. In addition to this advantage, Co-Fe NCs have the unique ability to form growing chains under an alternating magnetic field (AMF). This unique chain formation, along with the mild hyperthermia and intrinsic cobalt toxicity, leads to complete tumor regression and improved overall survival in an in vivo murine xenograft model, all under clinically approved AMF conditions. Numerical calculations identify magnetic anisotropy as the main Co-Fe NCs' feature to generate such chain formations. This novel combination therapy can improve the effects of magnetic hyperthermia, inaugurating investigation of mechanical behaviors of nanoparticles under AMF, as a new avenue for cancer therapy.


Assuntos
Cobalto/química , Cobalto/uso terapêutico , Compostos Férricos/química , Compostos Férricos/uso terapêutico , Nanopartículas/química , Animais , Linhagem Celular Tumoral , Cobalto/efeitos adversos , Compostos Férricos/efeitos adversos , Humanos , Hipertermia Induzida , Campos Magnéticos , Camundongos , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Molecules ; 25(14)2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32650603

RESUMO

Ibuprofen is one of the most widely used pharmaceuticals, and due to its inefficient removal by conventional wastewater treatment, it can be found in natural surface waters at high concentrations. Recently, we demonstrated that the TpBD-(CF3)2 covalent organic framework (COF) can adsorb ibuprofen from ultrapure water with high efficiency. Here, we investigate the performance of the COF for the extraction of ibuprofen from natural water samples from a lake, river, and estuary. In general, the complexity of the natural water matrix induced a reduction in the adsorption efficiency of ibuprofen as compared to ultrapure water. The best performance, with over 70% adsorption efficiency, was found in lake water, the sample which featured the lowest pH. According to the theoretical calculations, ibuprofen more favorably interacts with the COF pores in the protonated form, which could partially account for the enhanced adsorption efficiency found in lake water. In addition, we explored the effect of the presence of competing pharmaceuticals, namely, acetaminophen and phenobarbital, on the ibuprofen adsorption as binary mixtures. Acetaminophen and phenobarbital were adsorbed by TpBD-(CF3)2 with low efficiency and their presence led to an increase in ibuprofen adsorption in the binary mixtures. Overall, this study demonstrates that TpBD-(CF3)2 is an efficient adsorbent for the extraction of ibuprofen from natural waters as well.


Assuntos
Ibuprofeno/isolamento & purificação , Estruturas Metalorgânicas/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água , Adsorção , Ibuprofeno/química , Fenobarbital/química , Fenobarbital/isolamento & purificação , Poluentes Químicos da Água/química
7.
Curr Med Chem ; 27(42): 7234-7255, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32586245

RESUMO

Nanodrugs represent novel solutions to reshuffle repurposed drugs for cancer therapy. They might offer different therapeutic options by combining targeted drug delivery and imaging in unique platforms. Such nanomaterials are deemed to overcome the limitations of currently available treatments, ultimately improving patients' life quality. However, despite these promises being made for over three decades, the poor clinical translation of nanoparticle- based therapies calls for deeper in vit.. and in vivo investigations. Translational issues arise very early during the development of nanodrugs, where complex and more reliable cell models are often replaced by easily accessible and convenient 2D monocultures. This is particularly true in the field of cancer therapy. In fact, 2D monocultures provide poor information about the real impact of the nanodrugs in a complex living organism, especially given the poor mimicry of the solid Tumors Microenvironment (TME). The dense and complex extracellular matrix (ECM) of solid tumors dramatically restricts nanoparticles efficacy, impairing the successful implementation of nanodrugs in medical applications. Herein, we propose a comprehensive guideline of the 3D cell culture models currently available, including their potential and limitations for the evaluation of nanodrugs activity. Advanced culture techniques, more closely resembling the physiological conditions of the TME, might give a better prediction of the reciprocal interactions between cells and nanoparticles and eventually help reconsider the use of old drugs for new applications.


Assuntos
Neoplasias , Sistemas de Liberação de Medicamentos , Humanos , Nanopartículas , Nanoestruturas , Neoplasias/tratamento farmacológico , Preparações Farmacêuticas , Microambiente Tumoral
8.
Artigo em Inglês | MEDLINE | ID: mdl-32391340

RESUMO

The research for heart therapies is challenged by the limited intrinsic regenerative capacity of the adult heart. Moreover, it has been hampered by the poor results obtained by tissue engineering and regenerative medicine attempts at generating functional beating constructs able to integrate with the host tissue. For this reason, organ transplantation remains the elective treatment for end-stage heart failure, while novel strategies aiming to promote cardiac regeneration or repair lag behind. The recent discovery that adult cardiomyocytes can be ectopically induced to enter the cell cycle and proliferate by a combination of microRNAs and cardioprotective drugs, like anti-oxidant, anti-inflammatory, anti-coagulants and anti-platelets agents, fueled the quest for new strategies suited to foster cardiac repair. While proposing a revolutionary approach for heart regeneration, these studies raised serious issues regarding the efficient controlled delivery of the therapeutic cargo, as well as its timely removal or metabolic inactivation from the site of action. Especially, there is need for innovative treatment because of evidence of severe side effects caused by pleiotropic drugs. Biocompatible nanoparticles possess unique physico-chemical properties that have been extensively exploited for overcoming the limitations of standard medical therapies. Researchers have put great efforts into the optimization of the nanoparticles synthesis and functionalization, to control their interactions with the biological milieu and use as a viable alternative to traditional approaches. Nanoparticles can be used for diagnosis and deliver therapies in a personalized and targeted fashion. Regarding the treatment of cardiovascular diseases, nanoparticles-based strategies have provided very promising outcomes, in preclinical studies, during the last years. Efficient encapsulation of a large variety of cargos, specific release at the desired site and improvement of cardiac function are some of the main achievements reached so far by nanoparticle-based treatments in animal models. This work offers an overview on the recent nanomedical applications for cardiac regeneration and highlights how the versatility of nanomaterials can be combined with the newest molecular biology discoveries to advance cardiac regeneration therapies.

9.
Nanoscale ; 11(13): 6072-6079, 2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30869704

RESUMO

A novel procedure for the preparation of magnetic covalent organic frameworks (COFs) is reported. In situ functionalization of Fe3O4 with dopamine rapidly afforded amino-functionalized magnetic nanoparticles, which after decoration with a COF building block and subsequent COF growth gave access to magnetic composite mTpBD-Me2. The optimized synthesis conditions yielded crystalline and superparamagnetic material with no loss in surface area as compared to bulk COF. The composite material was employed for the first time in magnetic solid-phase extraction of marine biotoxins from seawater with high efficiency, where calculated maximum adsorption capacities of 812 mg g-1 and 830 mg g-1 were found for okadaic acid (OA) and dinophysistoxin-1 (DTX-1), respectively, corresponding to an increase of ∼500-fold for OA and ∼300-fold for DTX-1 as compared to the commonly used non-magnetic macroporous resins. Nearly quantitative desorption efficiency of both biotoxins was obtained using 2-propanol as solvent, rendering the composite materials recyclable with merely minor losses in adsorption capacity after five consecutive cycles of adsorption/desorption. In addition, retention of crystallinity after the adsorption cycles highlights the stability of the composite in seawater. These results illustrate the great efficiency of the novel material in biotoxin adsorption and show great promise for its application in environmental monitoring programs.


Assuntos
Magnetismo , Estruturas Metalorgânicas/química , Ácido Okadáico/química , Piranos/química , 2-Propanol/química , Adsorção , Dopamina/química , Óxido Ferroso-Férrico/química , Cinética , Ácido Okadáico/isolamento & purificação , Piranos/isolamento & purificação , Extração em Fase Sólida
10.
Chemistry ; 25(26): 6461-6473, 2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-30653775

RESUMO

Covalent organic frameworks (COFs) are attractive materials receiving increasing interest in the literature due to their crystallinity, large surface area, and pore uniformity. Their properties can be tailored towards specific applications by judicious design of COF building blocks, giving access to tailor-made pore sizes and surfaces. In this Concept article, developments in the field of COFs that have allowed these materials to be explored for contaminant adsorption are discussed. Strategies to obtain water-stable materials with highly ordered structures and large surface areas are reviewed. Post-synthetic modification approaches, by which pore surfaces can be tuned to target specific contaminants, are described. Recent advances in COF formulations, crucial for future implementation in adsorption devices, are highlighted. At the end, future challenges which need to be addressed to allow for the deployment of COFs for the capture of water contaminants will be discussed.

11.
ACS Appl Mater Interfaces ; 11(6): 5727-5739, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30624889

RESUMO

The use of magnetic nanoparticles in oncothermia has been investigated for decades, but an effective combination of magnetic nanoparticles and localized chemotherapy under clinical magnetic hyperthermia (MH) conditions calls for novel platforms. In this study, we have engineered magnetic thermoresponsive iron oxide nanocubes (TR-cubes) to merge MH treatment with heat-mediated drug delivery, having in mind the clinical translation of the nanoplatform. We have chosen iron oxide based nanoparticles with a cubic shape because of their outstanding heat performance under MH clinical conditions, which makes them benchmark agents for MH. Accomplishing a surface-initiated polymerization of strongly interactive nanoparticles such as our iron oxide nanocubes, however, remains the main challenge to overcome. Here, we demonstrate that it is possible to accelerate the growth of a polymer shell on each nanocube by simple irradiation of a copper-mediated polymerization with a ultraviolet light (UV) light, which both speeds up the polymerization and prevents nanocube aggregation. Moreover, we demonstrate herein that these TR-cubes can carry chemotherapeutic doxorubicin (DOXO-loaded-TR-cubes) without compromising their thermoresponsiveness both in vitro and in vivo. In vivo efficacy studies showed complete tumor suppression and the highest survival rate for animals that had been treated with DOXO-loaded-TR-cubes, only when they were exposed to MH. The biodistribution of intravenously injected TR-cubes showed signs of renal clearance within 1 week and complete clearance after 5 months. This biomedical platform works under clinical MH conditions and at a low iron dosage, which will enable the translation of dual MH/heat-mediated chemotherapy, thus overcoming the clinical limitation of MH: i.e., being able to monitor tumor progression post-MH-treatment by magnetic resonance imaging (MRI).


Assuntos
Portadores de Fármacos/química , Compostos Férricos/química , Nanoestruturas/química , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/uso terapêutico , Humanos , Hipertermia Induzida , Estimativa de Kaplan-Meier , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita/química , Camundongos , Camundongos Nus , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Neoplasias/mortalidade , Neoplasias/patologia , Polímeros/química , Distribuição Tecidual , Transplante Heterólogo , Raios Ultravioleta
12.
Chemistry ; 24(42): 10601-10605, 2018 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-29893500

RESUMO

Capture of pharmaceutical pollutants from water was studied using a novel fluorine-bearing covalent organic framework TpBD-(CF3 )2 , which showed ibuprofen adsorption capacity of 119 mg g-1 at neutral pH. This value is further enhanced at pH 2, highlighting the potential of this class of materials to serve as adsorbents even under harsh conditions. The adsorbed pharmaceutical can be recovered from TpBD-(CF3 )2 in high yield, offering the option of recycling both the adsorbent and the pharmaceutical. The high efficiency of ibuprofen capture as compared to other less lipophilic pharmaceuticals suggests that COFs can be pre-designed for selective capture of contaminants.

13.
Acc Chem Res ; 51(5): 999-1013, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29733199

RESUMO

Combining hard matter, like inorganic nanocrystals, and soft materials, like polymers, can generate multipurpose materials with a broader range of applications with respect to the individual building blocks. Given their unique properties at the nanoscale, magnetic nanoparticles (MNPs) have drawn a great deal of interest due to their potential use in the biomedical field, targeting several applications such as heat hubs in magnetic hyperthermia (MHT, a heat-damage based therapy), contrast agents in magnetic resonance imaging (MRI), and nanocarriers for targeted drug delivery. At the same time, polymers, with their versatile macromolecular structure, can serve as flexible platforms with regard to constructing advanced functional materials. Advances in the development of novel polymerization techniques has enabled the preparation of a large portfolio of polymers that have intriguing physicochemical properties; in particular, those polymers that can undergo conformational and structural changes in response to their surrounding environmental stimuli. Therefore, merging the unique features of MNPs with polymer responsive properties, such as pH and thermal stimuli activation, enables smart control of polymer properties operated by the MNPs and vice versa at an unprecedented level of sophistication. These magnetic-stimuli-responsive nanosystems will impact the cancer field by combining magnetic hyperthermia with stimuli-dependent controlled drug delivery toward multimodal therapies. In this approach, a malignant tumor may be destroyed by a combination of the synergic effects of thermal energy generated by MNPs and the controlled release of antitumoral agents, activated by means of either heat or pH changes, finally leading to a much more effective cancer treatment than those available today. Also, taking advantage of such a triggered chemotherapy will overcome the notorious drawbacks of classic chemotherapy. Nevertheless, tracking the changes in the magnetic properties of such pH-responsive magnetic nanoparticles, which are provided by changes in relaxation signals of water molecules surrounding the nanoplatform, is a novel approach to the detection of pathological conditions (such as pH-changes at the ischemic and tumor sites). Despite great efforts by chemists to fabricate different featured materials, there have been few successful preclinical studies to date. A clinical translation of magnetic stimuli-responsive systems would require overcoming the actual nanosystem limitations and the joint efforts of an interdisciplinary scientific community. In this Account, we have framed state of the art magnetic stimuli-responsive systems, focusing on thermo- and pH-responsive behavior, following an organization based on the response mechanisms of polymers. By evaluating the features of the most representative and advanced nanosystems that already exist in literature, we present the challenges to overcome, the future directions to undertake for the development of magnetic stimuli-responsive nanoplatforms that will work under clinical operating conditions and have biodegradable and biocompatible features, and a consideration of the technical aspects.

14.
J Chromatogr A ; 1525: 17-22, 2017 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-29037592

RESUMO

Phycotoxins, compounds produced by some marine microalgal species, can reach high concentrations in the sea when a massive proliferation occurs, the so-called harmful algal bloom. These compounds are especially dangerous to human health when concentrated in the digestive glands of seafood. In order to generate an early warning system to alert for approaching toxic outbreaks, it is very important to improve monitoring methods of phycotoxins in aquatic ecosystems. Solid-phase adsorption toxin tracking devices reported thus far based on polymeric resins have not been able to provide an efficient harmful algal bloom prediction system due to their low adsorption capabilities. In this work, a water-stable covalent organic framework (COF) was evaluated as adsorbent for the hydrophobic toxin okadaic acid, one of the most relevant marine toxins and the parental compound of the most common group of toxins responsible for the diarrhetic shellfish poisoning. Adsorption kinetics of okadaic acid onto the COF in seawater showed that equilibrium concentration was reached in only 60min, with a maximum experimental adsorption of 61mgg-1. Desorption of okadaic acid from the COF was successful with both 70% ethanol and acetonitrile as solvent, and the COF material could be reused with minor losses in adsorption capacity for three cycles. The results demonstrate that COF materials are promising candidates for solid-phase adsorption in water monitoring devices.


Assuntos
Monitoramento Ambiental/métodos , Proliferação Nociva de Algas , Estruturas Metalorgânicas/normas , Ácido Okadáico/química , Adsorção , Ecossistema , Monitoramento Ambiental/instrumentação , Estruturas Metalorgânicas/química , Água do Mar/química
15.
Faraday Discuss ; 175: 27-40, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25418458

RESUMO

Ferromagnetic carbon-coated cobalt nanoparticles have been ligated by a covalent or non-covalent strategy with dendrons or polymers bearing amino-, hydroxy- or polyether-functionalities, aiming at synthesizing materials that are dispersible in aqueous solutions, being a prerequisite for applications in biomedicine. Most efficiently for this purpose proved to be a covalently anchored polyethyleneimine (PEI) with a loading of approximately 10 mmol of amino groups per gram of hybrid nanomaterial, resulting in dispersions that are stable in water for several days.


Assuntos
Tecnologia Biomédica , Carbono/química , Cobalto/química , Nanopartículas Metálicas/química , Compostos Organometálicos/química , Estrutura Molecular , Compostos Organometálicos/síntese química
16.
Rev. bras. ortop ; 28(9): 694-6, set. 1993. ilus
Artigo em Português | LILACS | ID: lil-199652

RESUMO

Os autores apresentam um caso de síndrome do túnel do carpo tendo como etiologia calcinose tumoral. Trata-se de uma rara forma de compressao do nervo mediano, näo tendo sido encontrado, na bibliografia, relato semelhante. Este trabalho, além de apresentar uma revisäo das várias formas de calcificaçäo ectópica, ressalta a importância da incidência radiográfica específica para o túnel do carpo.


Assuntos
Humanos , Feminino , Pessoa de Meia-Idade , Calcinose/complicações , Síndrome do Túnel Carpal/etiologia , Síndrome do Túnel Carpal/cirurgia , Síndrome do Túnel Carpal/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...