Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bone ; 131: 115142, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31704340

RESUMO

GM1 gangliosidosis is a lysosomal storage disorder caused by mutations in GLB1 encoding a lysosomal ß-galactosidase. This disease is a continuum from the severe infantile form with rapid neurological decline to the chronic adult form, which is not life-limiting. The intermediate or type 2 form can be further classified into late infantile and juvenile forms. The frequency and severity of skeletal outcomes in late infantile and juvenile patients have not been characterized. Our goals are to describe the radiological skeletal abnormalities, bone mineral density (BMD), and frequency of fractures in patients with intermediate GM1 gangliosidosis. We evaluated 13 late infantile and 21 juvenile patients as part of an ongoing natural history study. Average time from onset of symptoms to diagnosis was 1.9 and 6.3 years for late infantile and juvenile patients, respectively. All late infantile patients had odontoid hypoplasia and pear-shaped vertebral bodies, the frequency of which was significantly different than in patients with juvenile disease (none and 14%, respectively). Juvenile patients had irregular endplates of the vertebral bodies (15/21), central indentation of endplates (10/21), and squared and flat vertebral bodies (10/21); all allowed radiographic differentiation from late infantile patients. Lumbar spine, femoral neck, and total hip BMD were significantly decreased (-2.1, -2.2, and -1.8 Z-scores respectively). Lumbar spine BMD peaked at 19 years, while distal forearm BMD peaked at 30 years. Despite low BMD, no patients exhibited fractures. We have demonstrated that all late infantile patients have some degree of odontoid hypoplasia suggesting the need for cervical spine evaluation particularly prior to anesthesia, whereas juvenile patients had variable skeletal involvement often affecting activities of daily living. Type 2 GM1 gangliosidosis patients have skeletal abnormalities that are both an early indication of their diagnosis, and require monitoring and management to ensure the highest possible quality of life.

2.
Pediatr Transplant ; : e13604, 2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31651069

RESUMO

MA is a rare, autosomal recessive disorder characterized by episodes of inflammation and periodic fevers. In its most severe form, it can result in facial dysmorphism, growth inhibition, ataxia, liver dysfunction, intellectual disability, and at times can be fatal. A number of case reports exist stating that SCT is curative in these patients. We present the case of a patient diagnosed with MA at birth, who underwent SCT at the age of 14 months with intent to cure. She achieved complete engraftment and urine mevalonate became undetectable. However, 18 months following transplant, she developed frequent episodes of fevers, rashes, arthritis, and a rising urinary mevalonate. She was subsequently diagnosed with relapse. She now requires treatment with steroids and canakinumab to manage her disease. This case is the first report of disease relapse following transplant for MA. It runs contrary to prior reports that SCT is fully curative of MA and suggests that transplant may instead provide a means of decreasing disease severity without entirely eradicating the condition.

3.
BMC Nephrol ; 20(1): 353, 2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31500578

RESUMO

BACKGROUND: 17q12 deletion syndrome encompasses a broad constellation of clinical phenotypes, including renal magnesium wasting, maturity-onset diabetes of the young (MODY), renal cysts, genitourinary malformations, and neuropsychiatric illness. Manifestations outside of the renal, endocrine, and nervous systems have not been well described. CASE PRESENTATION: We report a 62-year-old male referred to the Undiagnosed Diseases Program (UDP) at the National Institutes of Health (NIH) who presented with persistent hypermagnesiuric hypomagnesemia and was found to have a 17q12 deletion. The patient exhibited several known manifestations of the syndrome, including severe hypomagnesemia, renal cysts, diabetes and cognitive deficits. Coronary CT revealed extensive coronary calcifications, with a coronary artery calcification score of 12,427. Vascular calcifications have not been previously reported in this condition. We describe several physiologic mechanisms and a review of literature to support the expansion of the 17q12 deletion syndrome to include vascular calcification. CONCLUSION: Extensive coronary and vascular calcifications may be an extension of the 17q12 deletion phenotype, particularly if hypomagnesemia and hyperparathyroidism are prevalent. In patients with 17q12 deletions involving HNF1B, hyperparathyroidism and hypomagnesemia may contribute to significant cardiovascular risk.

4.
Eur J Hum Genet ; 2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-31395947

RESUMO

PTPN23 is a His-domain protein-tyrosine phosphatase implicated in ciliogenesis, the endosomal sorting complex required for transport (ESCRT) pathway, and RNA splicing. Until recently, no defined human phenotype had been associated with alterations in this gene. We identified and report a cohort of seven patients with either homozygous or compound heterozygous rare deleterious variants in PTPN23. Combined with four patients previously reported, a total of 11 patients with this disorder have now been identified. We expand the phenotypic and variation spectrum associated with defects in this gene. Patients have strong phenotypic overlap, suggesting a defined autosomal recessive syndrome caused by reduced function of PTPN23. Shared characteristics of affected individuals include developmental delay, brain abnormalities (mainly ventriculomegaly and/or brain atrophy), intellectual disability, spasticity, language disorder, microcephaly, optic atrophy, and seizures. We observe a broad range of variants across patients that are likely strongly reducing the expression or disrupting the function of the protein. However, we do not observe any patients with an allele combination predicted to result in complete loss of function of PTPN23, as this is likely incompatible with life, consistent with reported embryonic lethality in the mouse. None of the observed or reported variants are recurrent, although some have been identified in homozygosis in patients from consanguineous populations. This study expands the phenotypic and molecular spectrum of PTPN23 associated disease and identifies major shared features among patients affected with this disorder, while providing additional support to the important role of PTPN23 in human nervous and visual system development and function.

5.
Mol Genet Metab ; 128(1-2): 151-161, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31445883

RESUMO

Defects of the glycosylphosphatidylinositol (GPI) biosynthesis pathway constitute an emerging subgroup of congenital disorders of glycosylation with heterogeneous phenotypes. A mutation in the promoter of PIGM, resulting in a syndrome with portal vein thrombosis and persistent absence seizures, was previously described in three patients. We now report four additional patients in two unrelated families, with further clinical, biochemical and molecular delineation of this unique entity. We also describe the first prenatal diagnosis of PIGM deficiency, allowing characterization of the natural history of the disease from birth. The patients described herein expand the phenotypic spectrum of PIGM deficiency to include macrocephaly and infantile-onset cerebrovascular thrombotic events. Finally, we offer insights regarding targeted treatment of this rare disorder with sodium phenylbutyrate.

6.
J Inherit Metab Dis ; 2019 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-31420886

RESUMO

Numerous etiologies may lead to nonimmune hydrops fetalis (NIHF) including congenital disorders of glycosylation (CDG). Recognition of CDG in NIHF is challenging. This study reviews prenatal and neonatal characteristics of CDG presenting with NIHF. A systematic literature search was performed. Thirteen articles met the inclusion criteria. Twenty-one cases with NIHF associated with a CDG were reported. There were 17 live births, three pregnancy terminations, and one fetal demise. Timing of CDG diagnosis was reported mostly postnatally (90%; 10/11). Postnatal genetic testing was reported in 18 patients; three patients were diagnosed by isoelectric focusing of serum transferrin that showed a type 1 pattern. The genes reported for CDG with NIHF for 15 distinct families include: PMM2 in 47% (7/15), ALG9 in 20% (3/15), ALG8 in 13% (2/15), ALG1 in 7% (1/15), MGAT2 in 7% (1/15), and COG6 7% (1/15). In our review, 81% (17/21) reported facial dysmorphism, 52% (11/21) reported CNS abnormalities, most commonly cerebellar atrophy (64%; 7/11), and 38% (8/21) reported cardiovascular abnormalities, most commonly hypertrophic cardiomyopathy (63%; 5/8). Among live births, 71% (12/17) infants died at a median age of 34 days (range 1-185). Thrombocytopenia was reported in 53% (9/17) patients. Of those who survived past the neonatal period, 80% (4/5) had significant reported developmental delays. CDG should be on the differential diagnosis of NIHF in the presence of cerebellar atrophy, hypertrophic cardiomyopathy, or thrombocytopenia. Our review highlights the poor prognosis in infants with NIHF due to CDG and demonstrates the importance of identifying these disorders prenatally to guide providers in their counseling with families regarding pregnancy management. SYNOPSIS: Poor prognosis in fetuses and infants with nonimmune hydrops fetalis due to congenital disorders of glycosylation highlights the importance of prenatal diagnosis of this disorder.

7.
Am J Med Genet A ; 179(10): 2112-2118, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31444901

RESUMO

Generalized arterial calcifications of infancy (GACI) is caused by mutations in ENPP1. Other ENPP1-related phenotypes include pseudoxanthoma elasticum, hypophosphatemic rickets, and Cole disease. We studied four children from two Bedouin consanguineous families who presented with severe clinical phenotype including thrombocytopenia, hypoglycemia, hepatic, and neurologic manifestations. Initial working diagnosis included congenital infection; however, patients remained without a definitive diagnosis despite extensive workup. Consequently, we investigated a potential genetic etiology. Whole exome sequencing (WES) was performed for affected children and their parents. Following the identification of a novel mutation in the ENPP1 gene, we characterized this novel multisystemic presentation and revised relevant imaging studies. Using WES, we identified a novel homozygous mutation (c.556G > C; p.Gly186Arg) in ENPP1 which affects a highly conserved protein domain (somatomedin B2). ENPP1-associated genetic diseases exhibit phenotypic heterogeneity depending on mutation type and location. Follow-up clinical characterization of these families allowed us to revise and detect new features of systemic calcifications, which established the diagnosis of GACI, expanding the phenotypic spectrum associated with ENPP1 mutations. Our findings demonstrate that this novel ENPP1 founder mutation can cause a fatal multisystemic phenotype, mimicking severe congenital infection. This also represents the first reported mutation affecting the SMB2 domain, associated with GACI.

8.
Handb Clin Neurol ; 162: 449-481, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31324325

RESUMO

Inborn errors of metabolism, also known as inherited metabolic diseases, constitute an important group of conditions presenting with neurologic signs in newborns. They are individually rare but collectively common. Many are treatable through restoration of homeostasis of a disrupted metabolic pathway. Given their frequency and potential for treatment, the clinician should be aware of this group of conditions and learn to identify the typical manifestations of the different inborn errors of metabolism. In this review, we summarize the clinical, laboratory, electrophysiologic, and neuroimaging findings of the different inborn errors of metabolism that can present with florid neurologic signs and symptoms in the neonatal period.

9.
Mol Genet Metab ; 127(2): 117-121, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31005404

RESUMO

Inherited metabolic diseases account for about one third of pediatric patients with hepatomegaly, acute liver failure, cirrhosis or cholestasis. Specifically for pediatric acute liver failure, they account for 10-15% of cases, with a mortality of 22-65%. The percentage of acute liver failure caused by an inherited metabolic disease in children <2-3 years of age is even higher, ranging from a third to half of all cases. Metabolic liver disease accounts for 8-13% of all pediatric liver transplantations. Despite this high burden of disease, underdiagnosis remains common. We reviewed and updated the list of known metabolic etiologies associated with various types of metabolic liver involvement, and found 142 relevant inborn errors of metabolism. This represents the second of a series of articles attempting to create and maintain a comprehensive list of clinical and metabolic differential diagnoses according to system involvement.

10.
Am J Hum Genet ; 104(5): 925-935, 2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-30982609

RESUMO

Colony stimulating factor 1 receptor (CSF1R) plays key roles in regulating development and function of the monocyte/macrophage lineage, including microglia and osteoclasts. Mono-allelic mutations of CSF1R are known to cause hereditary diffuse leukoencephalopathy with spheroids (HDLS), an adult-onset progressive neurodegenerative disorder. Here, we report seven affected individuals from three unrelated families who had bi-allelic CSF1R mutations. In addition to early-onset HDLS-like neurological disorders, they had brain malformations and skeletal dysplasia compatible to dysosteosclerosis (DOS) or Pyle disease. We identified five CSF1R mutations that were homozygous or compound heterozygous in these affected individuals. Two of them were deep intronic mutations resulting in abnormal inclusion of intron sequences in the mRNA. Compared with Csf1r-null mice, the skeletal and neural phenotypes of the affected individuals appeared milder and variable, suggesting that at least one of the mutations in each affected individual is hypomorphic. Our results characterized a unique human skeletal phenotype caused by CSF1R deficiency and implied that bi-allelic CSF1R mutations cause a spectrum of neurological and skeletal disorders, probably depending on the residual CSF1R function.

11.
Mol Genet Metab ; 127(1): 28-30, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30928149

RESUMO

About a third of patients with inherited metabolic diseases with neurologic involvement suffer from a movement disorder, in the form of ataxia, hyperkinetic movements, or hypokinetic-rigid syndrome. We reviewed and updated the list of known metabolic etiologies associated with various types of movement disorders, and found approximately 200 relevant inborn errors of metabolism. This represents the first of a series of articles attempting to create and maintain a comprehensive list of clinical and metabolic differential diagnoses according to system involvement.


Assuntos
Erros Inatos do Metabolismo/complicações , Transtornos dos Movimentos/diagnóstico , Transtornos dos Movimentos/etiologia , Ataxia/etiologia , Diagnóstico Diferencial , Distonia/etiologia , Humanos , Transtornos Parkinsonianos/etiologia
12.
Am J Med Genet A ; 179(7): 1293-1298, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30950220

RESUMO

Respiratory chain disorders comprise a heterogeneous group of diseases that are the result of mutations in nuclear or mitochondrial genes. TMEM70 encodes a nuclear protein involved in the assembly of respiratory chain complex V. Although mutations in various genes can result in isolated complex V deficiency; TMEM70 mutations represent the most common reported etiology. TMEM70 deficiency is known to cause a syndrome of neonatal mitochondrial encephalocardiomyopathy, accompanied by elevated lactate and hyperammonemia. Elevated citrulline has been reported previously in different inborn errors of metabolism, although uncommonly associated with TMEMT70 deficiency. We present a series of two siblings diagnosed with TMEM70 deficiency, and describe hypercitrullinemia during decompensation as a new finding in this condition. The cause of hyperammonemia in TMEM70 deficiency was previously assumed to be related to carbamoyl phosphate synthase 1 deficiency, but our finding of hypercitrullinemia rules out this possibility. We thus propose a different etiology for the hyperammonemia seen in these patients.

13.
Am J Med Genet A ; 179(6): 885-892, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30883013

RESUMO

The subject of rare disease numbers is rife with misconceptions, not just in websites and other layman's literature, but also in the medical literature. Various websites mention numbers that are not validated by any solid data, while in turn the medical literature cites the aforementioned websites as sources, thus perpetuating a number of myths about rare diseases and their burden. We review the existing literature on rare disease numbers, in an attempt to demystify the subject. Specifically, we summarize data pertaining to: (a) known number and cumulative prevalence of rare diseases; (b) rare disease-associated mortality; (c) rare disease-associated morbidity, including numbers on health care services related to rare diseases; and (d) orphan drug numbers.

15.
J Inherit Metab Dis ; 42(1): 5-28, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30740725

RESUMO

Phosphomannomutase 2 (PMM2-CDG) is the most common congenital disorder of N-glycosylation and is caused by a deficient PMM2 activity. The clinical presentation and the onset of PMM2-CDG vary among affected individuals ranging from a severe antenatal presentation with multisystem involvement to mild adulthood presentation limited to minor neurological involvement. Management of affected patients requires a multidisciplinary approach. In this article, a systematic review of the literature on PMM2-CDG was conducted by a group of international experts in different aspects of CDG. Our managment guidelines were initiated based on the available evidence-based data and experts' opinions. This guideline mainly addresses the clinical evaluation of each system/organ involved in PMM2-CDG, and the recommended management approach. It is the first systematic review of current practices in PMM2-CDG and the first guidelines aiming at establishing a practical approach to the recognition, diagnosis and management of PMM2-CDG patients.

17.
Pediatr Neurol ; 94: 64-69, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30770273

RESUMO

BACKGROUND: Arrest of fetal brain development and the fetal brain disruption sequence describe a severe phenotype involving microcephaly, occipital bone prominence, and scalp rugae. Congenital disorders of glycosylation are a heterogeneous group of inherited disorders involved in glycoprotein and glycolipid biosynthesis, which can cause microcephaly and severe neurodevelopmental disability. METHODS: We report an example of fetal microcephaly diagnosed at 36 weeks' gestation with a history of normal fetal biometry at 20 weeks' gestation. Postnatal genetic testing was performed. RESULTS: Fetal magnetic resonance imaging at 36 weeks' gestational age showed severe cortical thinning with a simplified gyral pattern for gestational age, ventriculomegaly, and agenesis of the corpus callosum. The fetal skull had a posterior shelf at the level of the lambdoid suture, characteristic of fetal brain disruption sequence. Postnatal brain magnetic resonance imaging found no brain growth during the interval from the fetal to postnatal study. The infant was found to have biallelic pathologic mutations in ALG11. CONCLUSIONS: Arrest of fetal brain development, with image findings consistent with fetal brain disruption sequence, is a previously unreported phenotype of congenital microcephaly in ALG11-congenital disorder of glycosylation. ALG11-congenital disorder of glycosylation should be considered in the differential diagnosis of this rare form of congenital microcephaly.

18.
Orphanet J Rare Dis ; 14(1): 52, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30791930

RESUMO

BACKGROUND: Determining the etiology of oculocutaneous albinism is important for proper clinical management and to determine prognosis. The purpose of this study was to genotype and phenotype eight adopted Chinese children who presented with oculocutaneous albinism and easy bruisability. RESULTS: The patients were evaluated at a single center; their ages ranged from 3 to 8 years. Whole exome or direct sequencing showed that two of the children had Hermansky-Pudlak syndrome (HPS) type-1 (HPS-1), one had HPS-3, one had HPS-4, and four had non-syndromic oculocutaneous albinism associated with TYR variants (OCA1). Two frameshift variants in HPS1 (c.9delC and c.1477delA), one nonsense in HPS4 (c.416G > A), and one missense variant in TYR (c.1235C > T) were unreported. The child with HPS-4 is the first case with this subtype reported in the Chinese population. Hypopigmentation in patients with HPS was mild compared to that in OCA1 cases, who had severe pigment defects. Bruises, which may be more visible in patients with hypopigmentation, were found in all cases with either HPS or OCA1. Whole mount transmission electron microscopy demonstrated absent platelet dense granules in the HPS cases; up to 1.9 mean dense granules per platelet were found in those with OCA1. Platelet aggregation studies in OCA1 cases were inconclusive. CONCLUSIONS: Clinical manifestations of oculocutaneous albinism and easy bruisability may be observed in children with HPS or OCA1. Establishing definitive diagnoses in children presenting with these phenotypic features is facilitated by genetic testing. Non-syndromic oculocutaneous albinism and various HPS subtypes, including HPS-4, are found in children of Chinese ancestry.


Assuntos
Albinismo Oculocutâneo/diagnóstico , Síndrome de Hermanski-Pudlak/diagnóstico , Albinismo Oculocutâneo/etiologia , Albinismo Oculocutâneo/genética , Plaquetas/metabolismo , Plaquetas/patologia , Criança , Pré-Escolar , Feminino , Genótipo , Síndrome de Hermanski-Pudlak/etiologia , Síndrome de Hermanski-Pudlak/genética , Humanos , Hipopigmentação , Masculino , Microscopia Eletrônica de Transmissão , Mutação/genética , Linhagem
19.
Am J Med Genet A ; 179(2): 150-158, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30614194

RESUMO

Cornelia de Lange syndrome (CdLS) is a dominant multisystemic malformation syndrome due to mutations in five genes-NIPBL, SMC1A, HDAC8, SMC3, and RAD21. The characteristic facial dysmorphisms include microcephaly, arched eyebrows, synophrys, short nose with depressed bridge and anteverted nares, long philtrum, thin lips, micrognathia, and hypertrichosis. Most affected individuals have intellectual disability, growth deficiency, and upper limb anomalies. This study looked at individuals from diverse populations with both clinical and molecularly confirmed diagnoses of CdLS by facial analysis technology. Clinical data and images from 246 individuals with CdLS were obtained from 15 countries. This cohort included 49% female patients and ages ranged from infancy to 37 years. Individuals were grouped into ancestry categories of African descent, Asian, Latin American, Middle Eastern, and Caucasian. Across these populations, 14 features showed a statistically significant difference. The most common facial features found in all ancestry groups included synophrys, short nose with anteverted nares, and a long philtrum with thin vermillion of the upper lip. Using facial analysis technology we compared 246 individuals with CdLS to 246 gender/age matched controls and found that sensitivity was equal or greater than 95% for all groups. Specificity was equal or greater than 91%. In conclusion, we present consistent clinical findings from global populations with CdLS while demonstrating how facial analysis technology can be a tool to support accurate diagnoses in the clinical setting. This work, along with prior studies in this arena, will assist in earlier detection, recognition, and treatment of CdLS worldwide.

20.
Am J Hum Genet ; 104(1): 139-156, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30595372

RESUMO

Type 2A protein phosphatases (PP2As) are highly expressed in the brain and regulate neuronal signaling by catalyzing phospho-Ser/Thr dephosphorylations in diverse substrates. PP2A holoenzymes comprise catalytic C-, scaffolding A-, and regulatory B-type subunits, which determine substrate specificity and physiological function. Interestingly, de novo mutations in genes encoding A- and B-type subunits have recently been implicated in intellectual disability (ID) and developmental delay (DD). We now report 16 individuals with mild to profound ID and DD and a de novo mutation in PPP2CA, encoding the catalytic Cα subunit. Other frequently observed features were severe language delay (71%), hypotonia (69%), epilepsy (63%), and brain abnormalities such as ventriculomegaly and a small corpus callosum (67%). Behavioral problems, including autism spectrum disorders, were reported in 47% of individuals, and three individuals had a congenital heart defect. PPP2CA de novo mutations included a partial gene deletion, a frameshift, three nonsense mutations, a single amino acid duplication, a recurrent mutation, and eight non-recurrent missense mutations. Functional studies showed complete PP2A dysfunction in four individuals with seemingly milder ID, hinting at haploinsufficiency. Ten other individuals showed mutation-specific biochemical distortions, including poor expression, altered binding to the A subunit and specific B-type subunits, and impaired phosphatase activity and C-terminal methylation. Four were suspected to have a dominant-negative mechanism, which correlated with severe ID. Two missense variants affecting the same residue largely behaved as wild-type in our functional assays. Overall, we found that pathogenic PPP2CA variants impair PP2A-B56(δ) functionality, suggesting that PP2A-related neurodevelopmental disorders constitute functionally converging ID syndromes.


Assuntos
Deficiência Intelectual/genética , Mutação , Proteína Fosfatase 2/genética , Adolescente , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Células HEK293 , Haploinsuficiência/genética , Humanos , Masculino , Ligação Proteica/genética , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA