Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Med Chem ; 28(29): 5884-5895, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33596793

RESUMO

This article presents a simplified view of integrins with emphasis on the α4 (α4ß1/VLA-4) integrin. Integrins are heterodimeric proteins expressed on the cell surface of leukocytes that participate in a wide variety of functions, such as survival, growth, differentiation, migration, inflammatory responses, tumour invasion, among others. When the extracellular matrix is degraded or deformed, cells are forced to undergo responsive changes that influence remodelling during physiological and pathological events. Integrins recognize these changes and trigger a series of cellular responses, forming a physical connection between the interior and the outside of the cell. The communication of integrins through the plasma membrane occurs in both directions, from the extracellular to the intracellular (outside-in) and from the intracellular to the extracellular (inside-out). Integrins are valid targets for antibodies and small-molecule antagonists. One example is the monoclonal antibody natalizumab, marketed under the name of TYSABRI®, used in the treatment of recurrent multiple sclerosis, which inhibits the adhesion of α4 integrin to its counter-receptor. α4ß1 Integrin antagonists are summarized here, and their utility as therapeutics are also discussed.


Assuntos
Integrina alfa4beta1 , Anticorpos Monoclonais , Adesão Celular , Integrina alfa4beta1/antagonistas & inibidores , Integrina alfa4beta1/fisiologia , Leucócitos
2.
J Biomol Struct Dyn ; : 1-23, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-33427075

RESUMO

Cyclooxygenase 2 (COX-2) is a well-established target for the design of anti-inflammatory intermediates. Celecoxib was selected as a template molecule to perform ligand-based virtual screening, i.e. to search for structures with similarity in shape and electrostatic potential, with a gradual increase in accuracy through the combined fitting of several steps using eight commercial databases. The molecules ZINC408709 and ZINC2090319 reproduced values within the limits established in an initial study of absorption and distribution in the body. No alert was fired for possible toxic groups when these molecules were subjected to toxicity prediction. Molecular docking results with these compounds showed a higher binding affinity in comparison to rofecoxib for the COX-2 target. Additionally, ZINC408709 and ZINC2090319 were predicted to be potentially biologically active. In in silico prediction of endocrine disruption potential, it was established that the molecule ZINC2090319 binds strongly to the target related to cardiovascular risk in a desirable way as a non-steroidal antagonist and ZINC408709 binds strongly to the target that is associated with the treatment of inflammatory pathologies and similar to celecoxib. Metabolites generated from these compounds are less likely to have side effects. Simulations were used to evaluate the interaction of compounds with COX-1 and COX-2 during 200 ns. Despite the differences, ZINC408709 molecule showed better stability for COX-2 during molecular dynamics simulation. In the calculations of free energy MM/PBSA, the molecule ZINC408709 ΔGbind value has a higher affinity to celecoxib and rofecoxib COX-2. This demonstrates that the selected substances can be considered as promising COX-2 inhibitors. Communicated by Ramaswamy H. Sarma.

3.
Molecules ; 25(18)2020 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-32932669

RESUMO

Non-steroidal anti-inflammatory drugs are inhibitors of cyclooxygenase-2 (COX-2) that were developed in order to avoid the side effects of non-selective inhibitors of COX-1. Thus, the present study aims to identify new selective chemical entities for the COX-2 enzyme via molecular modeling approaches. The best pharmacophore model was used to identify compounds within the ZINC database. The molecular properties were determined and selected with Pearson's correlation for the construction of quantitative structure-activity relationship (QSAR) models to predict the biological activities of the compounds obtained with virtual screening. The pharmacokinetic/toxicological profiles of the compounds were determined, as well as the binding modes through molecular docking compared to commercial compounds (rofecoxib and celecoxib). The QSAR analysis showed a fit with R = 0.9617, R2 = 0.9250, standard error of estimate (SEE) = 0.2238, and F = 46.2739, with the tetra-parametric regression model. After the analysis, only three promising inhibitors were selected, Z-964, Z-627, and Z-814, with their predicted pIC50 (-log IC50) values, Z-814 = 7.9484, Z-627 = 9.3458, and Z-964 = 9.5272. All candidates inhibitors complied with Lipinski's rule of five, which predicts a good oral availability and can be used in in vitro and in vivo tests in the zebrafish model in order to confirm the obtained in silico data.


Assuntos
Inibidores de Ciclo-Oxigenase 2/farmacologia , Inflamação/tratamento farmacológico , Animais , Sítios de Ligação , Células CACO-2 , Celecoxib/farmacologia , Cães , Avaliação Pré-Clínica de Medicamentos , Humanos , Concentração Inibidora 50 , Lactonas/farmacologia , Células Madin Darby de Rim Canino , Simulação de Acoplamento Molecular , Estrutura Molecular , Permeabilidade , Ligação Proteica , Relação Quantitativa Estrutura-Atividade , Análise de Regressão , Software , Sulfonas/farmacologia
4.
Pharmaceuticals (Basel) ; 13(9)2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32858871

RESUMO

The cyclooxygenase-2 receptor is a therapeutic target for planning potential drugs with anti-inflammatory activity. The selective cyclooxygenase-2 (COX-2) inhibitor rofecoxib was selected as a pivot molecule to perform virtual ligand-based screening from six commercial databases. We performed the search for similarly shaped Rapid Overlay of Chemical Structures (ROCS) and electrostatic (EON) compounds. After, we used pharmacokinetic and toxicological parameters to determine the best potential compounds, obtained through the softwares QikProp and Derek, respectively. Then, the compounds proceeded to the molecular anchorage study, which showed promising results of binding affinity with the hCOX-2 receptor: LMQC72 (∆G = -11.0 kcal/mol), LMQC36 (∆G = -10.6 kcal/mol), and LMQC50 (∆G = -10.2 kcal/mol). LMQC72 and LMQC36 showed higher binding affinity compared to rofecoxib (∆G = -10.4 kcal/mol). Finally, molecular dynamics (MD) simulations were used to evaluate the interaction of the compounds with the target hCOX-2 during 150 ns. In all MD simulation trajectories, the ligands remained interacting with the protein until the end of the simulation. The compounds were also complexing with hCOX-2 favorably. The compounds obtained the following affinity energy values: rofecoxib: ΔGbind = -45.31 kcal/mol; LMQC72: ΔGbind = -38.58 kcal/mol; LMQC36: ΔGbind = -36.10 kcal/mol; and LMQC50: ΔGbind = -39.40 kcal/mol. The selected LMQC72, LMQC50, and LMQC36 structures showed satisfactory pharmacokinetic results related to absorption and distribution. The toxicological predictions of these compounds did not display alerts for possible toxic groups and lower risk of cardiotoxicity compared to rofecoxib. Therefore, future in vitro and in vivo studies are needed to confirm the anti-inflammatory potential of the compounds selected here with bioinformatics approaches based on rofecoxib ligand.

5.
Molecules ; 24(16)2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31416180

RESUMO

Leukemias are neoplasms that affect hematopoietic cells, which are developed by genetic alterations (mutations) that lead to the loss of proliferation control mechanisms (maturation and/or cell death). The α4ß1 integrin receptor is a therapeutic target for inflammation, autoimmune diseases and lymphoid tumors. This study was carried out to search through the antagonists-based virtual screening for α4ß1 receptor. Initially, seventeen (17) structures were selected (based on the inhibitory activity values, IC50) and the structure with the best value was chosen as the pivot. The pharmacophoric pattern was determined from the online PharmaGist server and resulted in a model of score value equal to 97.940 with 15 pharmacophoric characteristics that were statistically evaluated via Pearson correlations, principal component analysis (PCA) and hierarchical clustering analysis (HCA). A refined model generated four pharmacophoric hypotheses totaling 1.478 structures set of Zinc_database. After, the pharmacokinetic, toxicological and biological activity predictions were realized comparing with pivot structure that resulted in five (ZINC72088291, ZINC68842860, ZINC14365931, ZINC09588345 and ZINC91247798) structures with optimal in silico predictions. Therefore, future studies are needed to confirm antitumor potential activity of molecules selected this work with in vitro and in vivo assays.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Simulação por Computador , Ensaios de Seleção de Medicamentos Antitumorais , Peptídeos/química , Peptídeos/farmacologia , Análise por Conglomerados , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Humanos , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Relação Estrutura-Atividade
6.
Pharmaceuticals (Basel) ; 12(2)2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-31003398

RESUMO

Aedes aegypti (Linnaeus, 1762; Diptera: Culicidae) is the main vector transmitting viral diseases such as dengue fever, dengue haemorrhagic fever, urban yellow fever, zika and chikungunya. Worldwide, especially in the Americas and Brazil, many cases of dengue have been reported in recent years, which have shown significant growth. The main control strategy is the elimination of the vector, carried out through various education programs, to change human habits, but the most usual is biological control, together with environmental management and chemical control. The most commonly insecticide used is temephos (an organophosphorus compound), but Aedes aegypti populations have shown resistance and the product is highly toxic, so we chose it as a template molecule to perform a ligand-based virtual screening in the ChemBrigde (DIVERSet-CL subcollection) database, searching for derivatives with similarity in shape (ROCS) and electrostatic potential (EON). Thus, fourty-five molecules were filtered based on their pharmacokinetic and toxicological properties and 11 molecules were selected by a molecular docking study, including binding affinity and mode of interaction. The L46, L66 and L68 molecules show potential inhibitory activity for both the insect (-9.28, -10.08 and -6.78 Kcal/mol, respectively) and human (-6.05, 6.25 and 7.2 Kcal/mol respectively) enzymes, as well as the juvenile hormone protein (-9.2; -10.96 and -8.16 kcal/mol, respectively), showing a significant difference in comparison to the template molecule temephos. Molecules L46, L66 and L68 interacted with important amino acids at each catalytic site of the enzyme reported in the literature. Thus, the molecules here investigated are potential inhibitors for both the acetylcholinesterase enzymes and juvenile hormone protein-from insect and humans, characterizing them as a potential insecticide against the Aedes aegypti mosquito.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...