Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomedicine (Lond) ; 14(23): 3075-3088, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31797726

RESUMO

Aim: The field of nanotechnology promotes the development of innovative and more effective cancer therapies. This work is aimed to develop a hybrid system that combines the capacity of boron nitride nanotubes (BNNTs) to be internalized by tumor cells and the ability of nickel ferrite nanoparticles to efficiently release heat by induced AC magnetic heating. Materials & methods: The systems studied were characterized by using x-ray diffractometry, transmission electron microscopy, vibrating sample magnetometry and Mössbauer spectroscopy. Results: The ferrite nanoparticles attached to BNNT were able to achieve the required temperatures for magnetohyperthermia therapies. After cellular internalization, AC induced magnetic heating of BNNT@NiFe2O4 can kill almost 80% of Hela cells lineage in a single cycle. Conclusion: This system can be a highly efficient magnetohyperthermia agent in cancer therapy.

2.
Nanomaterials (Basel) ; 7(4)2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-28417903

RESUMO

Currently, nanostructured compounds have been standing out for their optical, mechanical, and chemical features and for the possibilities of manipulation and regulation of complex biological processes. One of these compounds is boron nitride nanotubes (BNNTs), which are a nanostructured material analog to carbon nanotubes, but formed of nitrogen and boron atoms. BNNTs present high thermal stability along with high chemical inertia. Among biological applications, its biocompatibility, cellular uptake, and functionalization potential can be highlighted, in addition to its eased utilization due to its nanometric size and tumor cell internalization. When it comes to new forms of therapy, we can draw attention to boron neutron capture therapy (BNCT), an experimental radiotherapy characterized by a boron-10 isotope carrier inside the target and a thermal neutron beam focused on it. The activation of the boron-10 atom by a neutron generates a lithium atom, a gamma ray, and an alpha particle, which can be used to destroy tumor tissues. The aim of this work was to use BNNTs as a boron-10 carrier for BNCT and to demonstrate its potential. The nanomaterial was characterized through XRD, FTIR, and SEM. The WST-8 assay was performed to confirm the cell viability of BNNTs. The cells treated with BNNTs were irradiated with the neutron beam of a Triga reactor, and the apoptosis caused by the activation of the BNNTs was measured with a calcein AM/propidium iodide test. The results demonstrate that this nanomaterial is a promising candidate for cancer therapy through BNCT.

3.
Int J Pharm ; 481(1-2): 56-63, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25637832

RESUMO

Boron nitride nanotubes (BNNTs) have generated considerable interest among the scientific community because of their unique physical and chemical properties. They present good chemical inertness, high thermal stability, and optimal resistance to oxidation, that make them ideal candidates for biomedical applications, in particular as nanovectors for drug, gene and protein delivery into the cells. In this study, BNNTs were prepared through a synthesis based on a chemical vapor deposition (CVD) method, and thereafter chemically functionalized with folic acid. The obtained nanostructures have been characterized by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The characterization showed efficiently functionalized BNNTs of length of about 1 µm. Furthermore, confocal laser microscopy demonstrated that our nanotubes can be fluorescently-traced under appropriate excitation. Thanks to this property, it has been possible to investigate their internalization by HeLa cells through confocal microscopy, demonstrating that the BNNT up-take clearly increases after the functionalization with folate, a result confirmed by inductively coupled plasma (ICP) assessment of boron content inside the treated cell cultures.


Assuntos
Portadores de Fármacos/administração & dosagem , Ácido Fólico/administração & dosagem , Nanotubos , Compostos de Boro/administração & dosagem , Compostos de Boro/química , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Ácido Fólico/química , Células HeLa , Humanos , Microscopia Confocal , Nanotubos/química , Neoplasias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA