Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bone Marrow Transplant ; 54(12): 1995-2003, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31150018

RESUMO

Collection of an adequate amount of autologous haematopoietic stem progenitor cells (HSPC) is required for ex vivo manipulation and successful engraftment for certain inherited disorders. Fifty-seven paediatric patients (age 0.5-11.4 years) underwent a bone marrow harvest for the purpose of HSPC gene therapy (GT), including adenosine deaminase-severe combined immunodeficiency (ADA-SCID), Wiskott-Aldrich syndrome (WAS) and metachromatic leukodystrophy (MLD) patients. Total nucleated cells and the percentage and absolute counts of CD34+ cells were calculated at defined steps of the procedure (harvest, CD34+ cell purification, transduction with the gene transfer vector and infusion of the medicinal product). A minimum CD34+ cell dose for infusion was 2 × 106/kg, with an optimal target at 5-10 × 106/kg. Median volume of bone marrow harvested was 34.2 ml/kg (range 14.2-56.6). The number of CD34+ cells collected correlated inversely with weight and age in all patients and particularly in the MLD children group. All patients reached the minimum target dose for infusion: median dose of CD34+ cells/kg infused was 10.3 × 106/kg (3.7-25.9), with no difference among the three groups. Bone marrow harvest of volumes > 30 ml/kg in infants and children with ADA-SCID, WAS and MLD is well tolerated and allows obtaining an adequate dose of a medicinal product for HSPC-GT.

3.
Stem Cells Transl Med ; 8(10): 1107-1122, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31140762

RESUMO

Defective functionality of thymic epithelial cells (TECs), due to genetic mutations or injuring causes, results in altered T-cell development, leading to immunodeficiency or autoimmunity. These defects cannot be corrected by hematopoietic stem cell transplantation (HSCT), and thymus transplantation has not yet been demonstrated to be fully curative. Here, we provide proof of principle of a novel approach toward thymic regeneration, involving the generation of thymic organoids obtained by seeding gene-modified postnatal murine TECs into three-dimensional (3D) collagen type I scaffolds mimicking the thymic ultrastructure. To this end, freshly isolated TECs were transduced with a lentiviral vector system, allowing for doxycycline-induced Oct4 expression. Transient Oct4 expression promoted TECs expansion without drastically changing the cell lineage identity of adult TECs, which retain the expression of important molecules for thymus functionality such as Foxn1, Dll4, Dll1, and AIRE. Oct4-expressing TECs (iOCT4 TEC) were able to grow into 3D collagen type I scaffolds both in vitro and in vivo, demonstrating that the collagen structure reproduced a 3D environment similar to the thymic extracellular matrix, perfectly recognized by TECs. In vivo results showed that thymic organoids transplanted subcutaneously in athymic nude mice were vascularized but failed to support thymopoiesis because of their limited in vivo persistence. These findings provide evidence that gene modification, in combination with the usage of 3D biomimetic scaffolds, may represent a novel approach allowing the use of postnatal TECs for thymic regeneration. Stem Cells Translational Medicine 2019;8:1107-1122.

4.
Front Immunol ; 10: 447, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30949166

RESUMO

The thymus plays a fundamental role in establishing and maintaining central and peripheral tolerance and defects in thymic architecture or AIRE expression result in the development of autoreactive lymphocytes. Patients with partial DiGeorge Syndrome (pDGS) and Down Syndrome (DS) present alterations in size and architecture of the thymus and higher risk to develop autoimmunity. We sought to evaluate thymic architecture and thymocyte development in DGS and DS patients and to determine the extent to which thymic defects result in immune dysregulation and T cell homeostasis perturbation in these patients. Thymi from pediatric patients and age-matched controls were obtained to evaluate cortex and medullary compartments, AIRE expression and thymocyte development. In the same patients we also characterized immunophenotype of peripheral T cells. Phenotypic and functional characterization of thymic and peripheral regulatory T (Treg) cells was finally assessed. Histologic analysis revealed peculiar alterations in thymic medulla size and maturation in DGS and DS patients. Perturbed distribution of thymocytes and altered thymic output was also observed. DGS patients showed lower mature CD4+ and CD8+ T cell frequency, associated with reduced proportion and function of Tregs both in thymus and peripheral blood. DS patients showed increased frequency of single positive (SP) thymocytes and thymic Treg cells. However, Tregs isolated both from thymus and peripheral blood of DS patients showed reduced suppressive ability. Our results provide novel insights on thymic defects associated with DGS and DS and their impact on peripheral immune dysregulation. Indeed, thymic abnormalities and defect in thymocyte development, in particular in Treg cell number and function could contribute in the pathogenesis of the immunodysregulation present in pDGS and in DS patients.

5.
Front Immunol ; 10: 316, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31031743

RESUMO

Background: Primary Immunodeficiencies (PIDs) are a heterogeneous group of genetic immune disorders. While some PIDs can manifest with more than one phenotype, signs, and symptoms of various PIDs overlap considerably. Recently, novel defects in immune-related genes and additional variants in previously reported genes responsible for PIDs have been successfully identified by Next Generation Sequencing (NGS), allowing the recognition of a broad spectrum of disorders. Objective: To evaluate the strength and weakness of targeted NGS sequencing using custom-made Ion Torrent and Haloplex (Agilent) panels for diagnostics and research purposes. Methods: Five different panels including known and candidate genes were used to screen 105 patients with distinct PID features divided in three main PID categories: T cell defects, Humoral defects and Other PIDs. The Ion Torrent sequencing platform was used in 73 patients. Among these, 18 selected patients without a molecular diagnosis and 32 additional patients were analyzed by Haloplex enrichment technology. Results: The complementary use of the two custom-made targeted sequencing approaches allowed the identification of causative variants in 28.6% (n = 30) of patients. Twenty-two out of 73 (34.6%) patients were diagnosed by Ion Torrent. In this group 20 were included in the SCID/CID category. Eight out of 50 (16%) patients were diagnosed by Haloplex workflow. Ion Torrent method was highly successful for those cases with well-defined phenotypes for immunological and clinical presentation. The Haloplex approach was able to diagnose 4 SCID/CID patients and 4 additional patients with complex and extended phenotypes, embracing all three PID categories in which this approach was more efficient. Both technologies showed good gene coverage. Conclusions: NGS technology represents a powerful approach in the complex field of rare disorders but its different application should be weighted. A relatively small NGS target panel can be successfully applied for a robust diagnostic suspicion, while when the spectrum of clinical phenotypes overlaps more than one PID an in-depth NGS analysis is required, including also whole exome/genome sequencing to identify the causative gene.

6.
Lancet Haematol ; 6(5): e239-e253, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30981783

RESUMO

BACKGROUND: Wiskott-Aldrich syndrome is a rare, life-threatening, X-linked primary immunodeficiency characterised by microthrombocytopenia, infections, eczema, autoimmunity, and malignant disease. Lentiviral vector-mediated haemopoietic stem/progenitor cell (HSPC) gene therapy is a potentially curative treatment that represents an alternative to allogeneic HSPC transplantation. Here, we report safety and efficacy data from an interim analysis of patients with severe Wiskott-Aldrich syndrome who received lentiviral vector-derived gene therapy. METHODS: We did a non-randomised, open-label, phase 1/2 clinical study in paediatric patients with severe Wiskott-Aldrich syndrome, defined by either WAS gene mutation or absent Wiskott-Aldrich syndrome protein (WASP) expression or a Zhu clinical score of 3 or higher. We included patients who had no HLA-identical sibling donor available or, for children younger than 5 years of age, no suitable 10/10 matched unrelated donor or 6/6 unrelated cord blood donor. After treatment with rituximab and a reduced-intensity conditioning regimen of busulfan and fludarabine, patients received one intravenous infusion of autologous CD34+ cells genetically modified with a lentiviral vector encoding for human WAS cDNA. The primary safety endpoints were safety of the conditioning regimen and safety of lentiviral gene transfer into HSPCs. The primary efficacy endpoints were overall survival, sustained engraftment of genetically corrected HSPCs, expression of vector-derived WASP, improved T-cell function, antigen-specific responses to vaccinations, and improved platelet count and mean platelet volume normalisation. This interim analysis was done when the first six patients treated had completed at least 3 years of follow-up. The planned analyses are presented for the intention-to-treat population. This trial is registered with ClinicalTrials.gov (number NCT01515462) and EudraCT (number 2009-017346-32). FINDINGS: Between April 20, 2010, and Feb 26, 2015, nine patients (all male) were enrolled of whom one was excluded after screening; the age range of the eight treated children was 1·1-12·4 years. At the time of the interim analysis (data cutoff April 29, 2016), median follow-up was 3·6 years (range 0·5-5·6). Overall survival was 100%. Engraftment of genetically corrected HSPCs was successful and sustained in all patients. The fraction of WASP-positive lymphocytes increased from a median of 3·9% (range 1·8-35·6) before gene therapy to 66·7% (55·7-98·6) at 12 months after gene therapy, whereas WASP-positive platelets increased from 19·1% (range 4·1-31·0) to 76·6% (53·1-98·4). Improvement of immune function was shown by normalisation of in-vitro T-cell function and successful discontinuation of immunoglobulin supplementation in seven patients with follow-up longer than 1 year, followed by positive antigen-specific response to vaccination. Severe infections fell from 2·38 (95% CI 1·44-3·72) per patient-year of observation (PYO) in the year before gene therapy to 0·31 (0·04-1·11) per PYO in the second year after gene therapy and 0·17 (0·00-0·93) per PYO in the third year after gene therapy. Before gene therapy, platelet counts were lower than 20 × 109 per L in seven of eight patients. At the last follow-up visit, the platelet count had increased to 20-50 × 109 per L in one patient, 50-100 × 109 per L in five patients, and more than 100 × 109 per L in two patients, which resulted in independence from platelet transfusions and absence of severe bleeding events. 27 serious adverse events in six patients occurred after gene therapy, 23 (85%) of which were infectious (pyrexia [five events in three patients], device-related infections, including one case of sepsis [four events in three patients], and gastroenteritis, including one case due to rotavirus [three events in two patients]); these occurred mainly in the first 6 months of follow-up. No adverse reactions to the investigational drug product and no abnormal clonal proliferation or leukaemia were reported after gene therapy. INTERPRETATION: Data from this study show that gene therapy provides a valuable treatment option for patients with severe Wiskott-Aldrich syndrome, particularly for those who do not have a suitable HSPC donor available. FUNDING: Italian Telethon Foundation, GlaxoSmithKline, and Orchard Therapeutics.


Assuntos
Terapia Genética , Vetores Genéticos/genética , Células-Tronco Hematopoéticas/metabolismo , Lentivirus/genética , Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/terapia , Criança , Pré-Escolar , Feminino , Terapia Genética/métodos , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Lactente , Itália , Masculino , Mutação , Linfócitos T/imunologia , Linfócitos T/metabolismo , Condicionamento Pré-Transplante/métodos , Resultado do Tratamento , Síndrome de Wiskott-Aldrich/sangue , Síndrome de Wiskott-Aldrich/diagnóstico , Proteína da Síndrome de Wiskott-Aldrich/genética
7.
J Allergy Clin Immunol ; 144(3): 825-838, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30926529

RESUMO

BACKGROUND: Thrombocytopenia is a serious issue for all patients with classical Wiskott-Aldrich syndrome (WAS) and X-linked thrombocytopenia (XLT) because it causes severe and life-threatening bleeding. Lentiviral gene therapy (GT) for WAS has shown promising results in terms of immune reconstitution. However, despite the reduced severity and frequency of bleeding events, platelet counts remain low in GT-treated patients. OBJECTIVE: We carefully investigated platelet defects in terms of phenotype and function in untreated patients with WAS and assessed the effect of GT treatment on platelet dysfunction. METHODS: We analyzed a cohort of 20 patients with WAS/XLT, 15 of them receiving GT. Platelet phenotype and function were analyzed by using electron microscopy, flow cytometry, and an aggregation assay. Platelet protein composition was assessed before and after GT by means of proteomic profile analysis. RESULTS: We show that platelets from untreated patients with WAS have reduced size, abnormal ultrastructure, and a hyperactivated phenotype at steady state, whereas activation and aggregation responses to agonists are decreased. GT restores platelet size and function early after treatment and reduces the hyperactivated phenotype proportionally to WAS protein expression and length of follow-up. CONCLUSIONS: Our study highlights the coexistence of morphologic and multiple functional defects in platelets lacking WAS protein and demonstrates that GT normalizes the platelet proteomic profile with consequent restoration of platelet ultrastructure and phenotype, which might explain the observed reduction of bleeding episodes after GT. These results are instrumental also from the perspective of a future clinical trial in patients with XLT only presenting with microthrombocytopenia.

9.
J Allergy Clin Immunol ; 143(6): 2238-2253, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30660643

RESUMO

BACKGROUND: CD40 ligand (CD40L) deficiency, an X-linked primary immunodeficiency, causes recurrent sinopulmonary, Pneumocystis and Cryptosporidium species infections. Long-term survival with supportive therapy is poor. Currently, the only curative treatment is hematopoietic stem cell transplantation (HSCT). OBJECTIVE: We performed an international collaborative study to improve patients' management, aiming to individualize risk factors and determine optimal HSCT characteristics. METHODS: We retrospectively collected data on 130 patients who underwent HSCT for CD40L deficiency between 1993-2015. We analyzed outcome and variables' relevance with respect to survival and cure. RESULTS: Overall survival (OS), event-free survival (EFS), and disease-free survival (DFS) were 78.2%, 58.1%, and 72.3% 5 years after HSCT. Results were better in transplantations performed in 2000 or later and in children less than 10 years old at the time of HSCT. Pre-existing organ damage negatively influenced outcome. Sclerosing cholangitis was the most important risk factor. After 2000, superior OS was achieved with matched donors. Use of myeloablative regimens and HSCT at 2 years or less from diagnosis associated with higher OS and DFS. EFS was best with matched sibling donors, myeloablative conditioning (MAC), and bone marrow-derived stem cells. Most rejections occurred after reduced-intensity or nonmyeloablative conditioning, which associated with poor donor cell engraftment. Mortality occurred mainly early after HSCT, predominantly from infections. Among survivors who ceased immunoglobulin replacement, T-lymphocyte chimerism was 50% or greater donor in 85.2%. CONCLUSION: HSCT is curative in patients with CD40L deficiency, with improved outcome if performed before organ damage development. MAC is associated with better OS, EFS, and DFS. Prospective studies are required to compare the risks of HSCT with those of lifelong supportive therapy.

10.
Nat Med ; 24(11): 1683-1690, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30275570

RESUMO

Hematopoietic stem and progenitor cells (HSPC) are endowed with the role of generating and maintaining lifelong the extremely diverse pool of blood cells1. Clinically, transplantation of human HSPC from an allogeneic healthy donor or infusion of autologous gene-corrected HSPC can effectively replenish defective blood cell production caused by congenital or acquired disorders2-9. However, due to methodological and ethical constraints that have limited the study of human HSPC primarily to in vitro assays10 or xenotransplantation models11,12, the in vivo activity of HSPC has to date remained relatively unexplored in humans13-16. Here we report a comprehensive study of the frequencies, dynamics and output of seven HSPC subtypes in humans that was performed by tracking 148,093 individual clones in six patients treated with lentiviral gene therapy using autologous HSPC transplantation and followed for up to 5 years. We discovered that primitive multipotent progenitor and hematopoietic stem cell (HSC) populations have distinct roles during the initial reconstitution after transplant, compared with subsequent steady-state phases. Furthermore, we showed that a fraction of in vitro-activated HSC are resilient and undergo a defined delayed activation period upon transplant. Finally, our data support the concept that early lymphoid-biased progenitors might be capable of long-term survival, such that they can be maintained independently of their continuous production from HSC. Overall, this study provides comprehensive data on HSPC dynamics after autologous transplantation and gene therapy in humans.

12.
Front Immunol ; 9: 113, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29456531

RESUMO

Adenosine deaminase-deficient severe combined immunodeficiency disease (ADA-SCID) is a primary immune deficiency characterized by mutations in the ADA gene resulting in accumulation of toxic compounds affecting multiple districts. Hematopoietic stem cell transplantation (HSCT) from a matched donor and hematopoietic stem cell gene therapy are the preferred options for definitive treatment. Enzyme replacement therapy (ERT) is used to manage the disease in the short term, while a decreased efficacy is reported in the medium-long term. To date, eight cases of lymphomas have been described in ADA-SCID patients. Here we report the first case of plasmablastic lymphoma occurring in a young adult with ADA-SCID on long-term ERT, which turned out to be Epstein-Barr virus associated. The patient previously received infusions of genetically modified T cells. A cumulative analysis of the eight published cases of lymphoma from 1992 to date, and the case here described, reveals a high mortality (89%). The most common form is diffuse large B-cell lymphoma, which predominantly occurs in extra nodal sites. Seven cases occurred in patients on ERT and two after haploidentical HSCT. The significant incidence of immunodeficiency-associated lymphoproliferative disorders and poor survival of patients developing this complication highlight the priority in finding a prompt curative treatment for ADA-SCID.

13.
Mol Ther ; 26(3): 917-931, 2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29433935

RESUMO

Loss of adenosine deaminase activity leads to severe combined immunodeficiency (ADA-SCID); production and function of T, B, and natural killer (NK) cells are impaired. Gene therapy (GT) with an autologous CD34+-enriched cell fraction that contains CD34+ cells transduced with a retroviral vector encoding the human ADA cDNA sequence leads to immune reconstitution in most patients. Here, we report short- and medium-term safety analyses from 18 patients enrolled as part of single-arm, open-label studies or compassionate use programs. Survival was 100% with a median of 6.9 years follow-up (range, 2.3 to 13.4 years). Adverse events were mostly grade 1 or grade 2 and were reported by all 18 patients following GT. Thirty-nine serious adverse events (SAEs) were reported by 15 of 18 patients; no SAEs were considered related to GT. The most common adverse events reported post-GT include upper respiratory tract infection, gastroenteritis, rhinitis, bronchitis, oral candidiasis, cough, neutropenia, diarrhea, and pyrexia. Incidence rates for all of these events were highest during pre-treatment, treatment, and/or 3-month follow-up and then declined over medium-term follow-up. GT did not impact the incidence of neurologic/hearing impairments. No event indicative of leukemic transformation was reported.

15.
Hum Gene Ther ; 28(11): 972-981, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28847159

RESUMO

Twenty-five years have passed since first attempts of gene therapy (GT) in children affected by severe combined immunodeficiency (SCID) due to adenosine deaminase (ADA) defect, also known by the general public as bubble babies. ADA-SCID is fatal early in life if untreated. Unconditioned hematopoietic stem cell (HSC) transplant from matched sibling donor represents a curative treatment but is available for few patients. Enzyme replacement therapy can be life-saving, but its chronic use has many drawbacks. This review summarizes the history of ADA-SCID GT over the last 25 years, starting from first pioneering studies in the early 1990s using gamma-retroviral vectors, based on multiple infusions of genetically corrected autologous peripheral blood lymphocytes. HSC represented the ideal target for gene correction to guarantee production of engineered multi-lineage progeny, but it required a decade to achieve therapeutic benefit with this approach. Introduction of low-intensity conditioning represented a crucial step in achieving stable gene-corrected HSC engraftment and therapeutic levels of ADA-expressing cells. Recent clinical trials demonstrated that gamma-retroviral GT for ADA-SCID has a favorable safety profile and is effective in restoring normal purine metabolism and immune functions in patients >13 years after treatment. No abnormal clonal proliferation or leukemia development have been observed in >40 patients treated experimentally in five different centers worldwide. In 2016, the medicinal product Strimvelis™ received marketing approval in Europe for patients affected by ADA-SCID without a suitable human leukocyte antigen-matched related donor. Positive safety and efficacy results have been obtained in GT clinical trials using lentiviral vectors encoding ADA. The results obtained in last 25 years in ADA-SCID GT development fundamentally contributed to improve patients' prognosis, together with earlier diagnosis thanks to newborn screening. These advances open the way to further clinical development of GT as treatment for broader applications, from inherited diseases to cancer.


Assuntos
Adenosina Desaminase/uso terapêutico , Terapia Genética , Vetores Genéticos/uso terapêutico , Imunodeficiência Combinada Severa/terapia , Adenosina Desaminase/genética , Terapia de Reposição de Enzimas , Vetores Genéticos/genética , Transplante de Células-Tronco Hematopoéticas , Humanos , Retroviridae/genética , Imunodeficiência Combinada Severa/genética
16.
Sci Rep ; 7: 40136, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-28074903

RESUMO

Adenosine Deaminase (ADA) deficiency is an autosomal recessive variant of severe combined immunodeficiency (SCID) caused by systemic accumulation of ADA substrates. Neurological and behavioral abnormalities observed in ADA-SCID patients surviving after stem cell transplantation or gene therapy represent an unresolved enigma in the field. We found significant neurological and cognitive alterations in untreated ADA-SCID patients as well as in two groups of patients after short- and long-term enzyme replacement therapy with PEG-ADA. These included motor dysfunction, EEG alterations, sensorineural hypoacusia, white matter and ventricular alterations in MRI as well as a low mental development index or IQ. Ada-deficient mice were significantly less active and showed anxiety-like behavior. Molecular and metabolic analyses showed that this phenotype coincides with metabolic alterations and aberrant adenosine receptor signaling. PEG-ADA treatment corrected metabolic adenosine-based alterations, but not cellular and signaling defects, indicating an intrinsic nature of the neurological and behavioral phenotype in ADA deficiency.


Assuntos
Adenosina Desaminase/deficiência , Adenosina/metabolismo , Encéfalo/metabolismo , Doenças do Sistema Nervoso/fisiopatologia , Animais , Comportamento , Comportamento Animal , Humanos , Camundongos , Doenças do Sistema Nervoso/patologia
17.
Blood ; 128(1): 45-54, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27129325

RESUMO

Adenosine deaminase (ADA) deficiency is a rare, autosomal-recessive systemic metabolic disease characterized by severe combined immunodeficiency (SCID). The treatment of choice for ADA-deficient SCID (ADA-SCID) is hematopoietic stem cell transplant from an HLA-matched sibling donor, although <25% of patients have such a donor available. Enzyme replacement therapy (ERT) partially and temporarily relieves immunodeficiency. We investigated the medium-term outcome of gene therapy (GT) in 18 patients with ADA-SCID for whom an HLA-identical family donor was not available; most were not responding well to ERT. Patients were treated with an autologous CD34(+)-enriched cell fraction that contained CD34(+) cells transduced with a retroviral vector encoding the human ADA complementary DNA sequence (GSK2696273) as part of single-arm, open-label studies or compassionate use programs. Overall survival was 100% over 2.3 to 13.4 years (median, 6.9 years). Gene-modified cells were stably present in multiple lineages throughout follow up. GT resulted in a sustained reduction in the severe infection rate from 1.17 events per person-year to 0.17 events per person-year (n = 17, patient 1 data not available). Immune reconstitution was demonstrated by normalization of T-cell subsets (CD3(+), CD4(+), and CD8(+)), evidence of thymopoiesis, and sustained T-cell proliferative capacity. B-cell function was evidenced by immunoglobulin production, decreased intravenous immunoglobulin use, and antibody response after vaccination. All 18 patients reported infections as adverse events; infections of respiratory and gastrointestinal tracts were reported most frequently. No events indicative of leukemic transformation were reported. Trial details were registered at www.clinicaltrials.gov as #NCT00598481.


Assuntos
Adenosina Desaminase/deficiência , Agamaglobulinemia/terapia , Terapia Genética , Recuperação de Função Fisiológica , Retroviridae , Imunodeficiência Combinada Severa/terapia , Adenosina Desaminase/genética , Adenosina Desaminase/imunologia , Agamaglobulinemia/genética , Agamaglobulinemia/imunologia , Agamaglobulinemia/mortalidade , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Criança , Pré-Escolar , Intervalo Livre de Doença , Feminino , Humanos , Lactente , Masculino , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/imunologia , Imunodeficiência Combinada Severa/mortalidade , Taxa de Sobrevida
18.
Cell Stem Cell ; 19(1): 107-19, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27237736

RESUMO

Hematopoietic stem/progenitor cells (HSPCs) are capable of supporting the lifelong production of blood cells exerting a wide spectrum of functions. Lentiviral vector HSPC gene therapy generates a human hematopoietic system stably marked at the clonal level by vector integration sites (ISs). Using IS analysis, we longitudinally tracked >89,000 clones from 15 distinct bone marrow and peripheral blood lineages purified up to 4 years after transplant in four Wiskott-Aldrich syndrome patients treated with HSPC gene therapy. We measured at the clonal level repopulating waves, populations' sizes and dynamics, activity of distinct HSPC subtypes, contribution of various progenitor classes during the early and late post-transplant phases, and hierarchical relationships among lineages. We discovered that in-vitro-manipulated HSPCs retain the ability to return to latency after transplant and can be physiologically reactivated, sustaining a stable hematopoietic output. This study constitutes in vivo comprehensive tracking in humans of hematopoietic clonal dynamics during the early and late post-transplant phases.


Assuntos
Rastreamento de Células , Hematopoese , Antígenos CD34/metabolismo , Engenharia Celular , Linhagem da Célula/genética , Pré-Escolar , Células Clonais , Terapia Genética , Hematopoese/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Lactente , Masculino , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/metabolismo , Mutagênese Insercional/genética , Fatores de Tempo , Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA